Complexity of Closest Pair via Polar-Pair of Point-Sets

Karthik C. S. (Weizmann Institute of Science)

Joint work with

Bundit Laekhanukit (Max-Planck- Institute and Shanghai University of Finance and Economics)

Roee David (Datorama)

 \odot Closest Pair problem in ℓ_p -metric

⊚ Closest Pair problem in ℓ_p -metric Input: $A \subset \mathbb{R}^d$, |A| = n

 \odot Closest Pair problem in ℓ_p -metric

Input:
$$A \subset \mathbb{R}^d$$
, $|A| = n$
Output: a^* , $b^* \in A$, $\min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p$

 \odot Closest Pair problem in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n
Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

 \odot Trivial algorithm: $O(n^2d)$

 \odot Closest Pair problem in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n
Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

⊚ Trivial algorithm: $O(n^2d)$ Bently-Shamos'76: $2^{O(d)}n \log n$ (for ℓ_2 -metric)

 \odot Closest Pair problem in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n

Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

⊚ Trivial algorithm: $O(n^2d)$ Bently-Shamos'76: $2^{O(d)}n\log n$ (for ℓ_2 -metric) Subcubic algorithms when d = O(n): Indyk-Lewenstein-Lipsky-Porat'04, Min-Kao-Zhu'09, Gold-Sharir'17

 \odot Closest Pair problem in ℓ_p -metric

```
Input: A \subset \mathbb{R}^d, |A| = n
Output: a^*, b^* \in A, \min_{\substack{a,b \in A \\ a \neq b}} ||a - b||_p
```

- © Trivial algorithm: $O(n^2d)$ Bently-Shamos'76: $2^{O(d)}n\log n$ (for ℓ_2 -metric) Subcubic algorithms when d = O(n): Indyk-Lewenstein-Lipsky-Porat'04, Min-Kao-Zhu'09, Gold-Sharir'17
- ⊚ What happens when $d \approx \log n$?

 \odot Bichromatic Closest Pair problem in ℓ_p metric

⊚ Bichromatic Closest Pair problem in ℓ_p metric Input: $A, B \subset \mathbb{R}^d$, |A| = |B| = n

 \odot Bichromatic Closest Pair problem in ℓ_p metric

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$
Output: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

 \odot Bichromatic Closest Pair problem in ℓ_p metric

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$
Output: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

 \odot Trivial algorithm: $O(n^2d)$

 \odot Bichromatic Closest Pair problem in ℓ_p metric

Input:
$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$
Output: $a^* \in A$, $b^* \in B$, $\min_{\substack{a \in A \\ b \in B}} ||a - b||_p$

- ⊚ Trivial algorithm: $O(n^2d)$
- © Computationally equivalent to determining Minimum Spanning Tree in ℓ_p -metric [Agarwal-Edelsbrunner-Schwarzkopf-Welzl'91, Krznaric-Levcopoulos-Nilsson'99]

⊚ Bichromatic Closest Pair problem in ℓ_p metric Input: $A, B \subset \mathbb{R}^d$, |A| = |B| = n Output: $a^* \in A$, $b^* \in B$, $\min_{a \in A} ||a - b||_p$

- ⊚ Trivial algorithm: $O(n^2d)$
- © Computationally equivalent to determining Minimum Spanning Tree in ℓ_p -metric [Agarwal-Edelsbrunner-Schwarzkopf-Welzl'91, Krznaric-Levcopoulos-Nilsson'99]
- © Assuming SETH, Bichromatic Closest Pair in ℓ_p -metric cannot be solved in subquadratic time when $d = \omega(\log n)$ [Alman-Williams'15]

Our Result

Bichromatic Closest Pair is at least as hard as Closest Pair

Our Result

Bichromatic Closest Pair is at least as hard as Closest Pair

Theorem (Informal)

In every ℓ_p -metric, Bichromatic Closest Pair is computationally equivalent to Closest Pair when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

Sphericity of a Graph $(sph_p(G))$

Sphericity of a Graph ($sph_p(G)$)

Smallest dimension for which we can realize:

$$||u-v||_p \le 1$$
 if $(u,v) \in G$ and $||u-v||_p > 1$ otherwise

Sphericity of a Graph ($sph_p(G)$)

Smallest dimension for which we can realize:

$$||u-v||_p \le 1$$
 if $(u,v) \in G$ and $||u-v||_p > 1$ otherwise

Contact Dimension of a Graph $(cd_p(G))$

Sphericity of a Graph ($sph_p(G)$)

Smallest dimension for which we can realize:

$$||u-v||_p \le 1$$
 if $(u,v) \in G$ and $||u-v||_p > 1$ otherwise

Contact Dimension of a Graph $(cd_p(G))$

Smallest dimension for which we can realize:

$$||u-v||_p = 1$$
 if $(u,v) \in G$ and $||u-v||_p > 1$ otherwise

Sphericity of a Graph $(sph_p(G))$

Smallest dimension for which we can realize:

$$||u-v||_v \le 1$$
 if $(u,v) \in G$ and $||u-v||_v > 1$ otherwise

Contact Dimension of a Graph $(cd_p(G))$

Smallest dimension for which we can realize:

$$||u-v||_p = 1$$
 if $(u,v) \in G$ and $||u-v||_p > 1$ otherwise

$$\operatorname{sph}_p(G) \leq \operatorname{cd}_p(G)$$

Our Result

Theorem (Informal)

In every ℓ_p -metric, Bichromatic Closest Pair is computationally equivalent to Closest Pair when $d = \Omega(\operatorname{cd}_p(K_{n,n}))$.

 \odot (n,d,A,B) be instance of Bichromatic Closest Pair in ℓ_p -metric

- \odot (n,d,A,B) be instance of Bichromatic Closest Pair in ℓ_p -metric

- ⊚ (n, d, A, B) be instance of Bichromatic Closest Pair in ℓ_p -metric
- $od^* = \operatorname{cd}_p(K_{n,n})$
- \otimes $X, Y \subset \mathbb{R}^{d^*}$, $|X| = |Y| = n \longrightarrow$ "polar-pair of point-sets"

- ⊚ (n, d, A, B) be instance of Bichromatic Closest Pair in ℓ_p -metric
- \odot $X, Y \subset \mathbb{R}^{d^*}, |X| = |Y| = n \longrightarrow$ "polar-pair of point-sets"
- ⊚ We build $(n, d + d^*, A' \cup B')$ instance of Closest Pair in ℓ_p -metric

- ⊚ (n, d, A, B) be instance of Bichromatic Closest Pair in ℓ_p -metric
- \bigcirc $X, Y \subset \mathbb{R}^{d^*}, |X| = |Y| = n \longrightarrow$ "polar-pair of point-sets"
- ⊚ We build $(n, d + d^*, A' \cup B')$ instance of Closest Pair in ℓ_p -metric

Points from same set:

$$||a_i' - a_j'||_p^p$$

Points from same set:

$$||a'_i - a'_j||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p$$

Points from same set:

$$\|a_i' - a_j'\|_p^p = \|a_i - a_j\|_p^p + \|x_i - x_j\|_p^p > \|x_i - x_j\|_p^p$$

Points from same set:

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p > ||x_i - x_j||_p^p$$

Points from different sets:

$$\|a_i' - b_j'\|_p^p$$

$$d \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_n & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d^* \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & x_n & y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_1' & a_2' & \cdots & a_n' & b_1' & b_2' & \cdots & b_n' \end{cases}$$

Points from same set:

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p > ||x_i - x_j||_p^p$$

Points from different sets:

$$||a_i' - b_j'||_p^p = ||a_i - b_j||_p^p + ||x_i - y_j'||_p^p$$

$$d \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_n & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d^* \begin{cases} \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & x_n & y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_1' & a_2' & \cdots & a_n' & b_1' & b_2' & \cdots & b_n' \end{cases}$$

Points from same set:

$$||a_i' - a_j'||_p^p = ||a_i - a_j||_p^p + ||x_i - x_j||_p^p > ||x_i - x_j||_p^p$$

Points from different sets:

$$\|a_i' - b_j'\|_p^p = \|a_i - b_j\|_p^p + \|x_i - y_j'\|_p^p = 1 + \|a_i - b_j\|_p^p$$

Contact Dimension and Sphericity: Table of Results

Metric	Bound	From
ℓ_0	$sph_0(K_{n,n}) = cd_0(K_{n,n}) = n$	This paper

Contact Dimension and Sphericity: Table of Results

Metric	Bound	From
ℓ_0	$sph_0(K_{n,n}) = cd_0(K_{n,n}) = n$	This paper
ℓ_1	$\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$	This paper

	From	Bound	Metric
	This paper	$sph_0(K_{n,n}) = cd_0(K_{n,n}) = n$	ℓ_0
	This paper	$\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$	ℓ_1
	This paper	$\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$	$\ell_p, p \in (1,2)$
_			

Metric	Bound	From
ℓ_0	$sph_0(K_{n,n}) = cd_0(K_{n,n}) = n$	This paper
ℓ_1	$\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$	This paper
$\ell_p, p \in (1,2)$	$\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$	This paper
ℓ_2	$n < \operatorname{sph}_2(K_{n,n}) \le \operatorname{cd}_2(K_{n,n}) < 1.5 \cdot n$	Maehara'91, Frankl-Maehara'88

Metric	Bound	From
ℓ_0	$sph_0(K_{n,n}) = cd_0(K_{n,n}) = n$	This paper
ℓ_1	$\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$	This paper
$\ell_p, p \in (1,2)$	$\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$	This paper
ℓ_2	$\operatorname{sph}_0(K_{n,n}) = \operatorname{cd}_0(K_{n,n}) = n$ $\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$ $\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$ $n < \operatorname{sph}_2(K_{n,n}) \le \operatorname{cd}_2(K_{n,n}) < 1.5 \cdot n$	Maehara'91, Frankl-Maehara'88
$\ell_p, p > 2$	$sph_p(K_{n,n}) = \Theta(cd_p(K_{n,n})) = \Theta(\log n)$	This paper

Metric	Bound	From
ℓ_0	$sph_0(K_{n,n}) = cd_0(K_{n,n}) = n$	This paper
ℓ_1	$\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$ $\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$	This paper
$\ell_p, p \in (1,2)$	$\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$	This paper
ℓ_2	$n < \operatorname{sph}_2(K_{n,n}) \le \operatorname{cd}_2(K_{n,n}) < 1.5 \cdot n$	Maehara'91, Frankl-Maehara'88
$\ell_p, p > 2$	$\operatorname{sph}_p(K_{n,n}) = \Theta(\operatorname{cd}_p(K_{n,n})) = \Theta(\log n)$	This paper
ℓ_{∞}	$\operatorname{sph}_{\infty}(K_{n,n}) = \operatorname{cd}_{\infty}(K_{n,n}) = 2\log_2 n$	Roberts'69

SETH Lower Bound for Closest Pair

Theorem (Alman-Williams'15)

For any $\varepsilon > 0$, $p \in \mathbb{R}_{\geq 1} \cup \{0\}$, and $d = \omega(\log n)$, Bichromatic Closest Pair in ℓ_p -metric admits no $(n^{2-\varepsilon})$ -time algorithm unless SETH is false.

SETH Lower Bound for Closest Pair

Theorem (Alman-Williams'15)

For any $\varepsilon > 0$, $p \in \mathbb{R}_{\geq 1} \cup \{0\}$, and $d = \omega(\log n)$, Bichromatic Closest Pair in ℓ_p -metric admits no $(n^{2-\varepsilon})$ -time algorithm unless SETH is false.

For
$$p > 2$$
, we have $cd_p(K_{n,n}) = \Theta(\log n)$

SETH Lower Bound for Closest Pair

Theorem (Alman-Williams'15)

For any $\varepsilon > 0$, $p \in \mathbb{R}_{\geq 1} \cup \{0\}$, and $d = \omega(\log n)$, Bichromatic Closest Pair in ℓ_p -metric admits no $(n^{2-\varepsilon})$ -time algorithm unless SETH is false.

For
$$p > 2$$
, we have $cd_p(K_{n,n}) = \Theta(\log n)$

Theorem (Our Result)

For any $\varepsilon > 0$, p > 2, and $d = \omega(\log n)$, Closest Pair in ℓ_p -metric admits no $(n^{2-\varepsilon})$ -time algorithm unless SETH is false.

SETH Lower Bound for approximate Closest Pair

Theorem (Rubinstein'18)

For any $\varepsilon > 0$, $p \in \mathbb{R}_{\geq 1} \cup \{0\}$, and $d = \omega(\log n)$, there exists $\delta(\varepsilon, p)$ such that Bichromatic Closest Pair in ℓ_p -metric admits no $(n^{2-\varepsilon})$ -time $(1+\delta)$ -approximation algorithm unless SETH is false.

SETH Lower Bound for approximate Closest Pair

Theorem (Rubinstein'18)

For any $\varepsilon > 0$, $p \in \mathbb{R}_{\geq 1} \cup \{0\}$, and $d = \omega(\log n)$, there exists $\delta(\varepsilon, p)$ such that Bichromatic Closest Pair in ℓ_p -metric admits no $(n^{2-\varepsilon})$ -time $(1 + \delta)$ -approximation algorithm unless SETH is false.

Theorem (Our Result)

For any $\varepsilon > 0$, p > 2, and $d = \omega(\log n)$, there exists $\delta(\varepsilon, p)$ such that Closest Pair in ℓ_p -metric admits no $(n^{2-\varepsilon})$ -time $(1 + \delta)$ -approximation algorithm unless SETH is false.

Proof of $\operatorname{cd}_p(K_{n,n}) = \Theta(\log n)$ for p > 2

- - Sphere packing bound

Proof of $cd_p(K_{n,n}) = \Theta(\log n)$ for p > 2

- \odot $\operatorname{cd}_p(K_{n,n}) = \Omega(\log n)$ for $p \in \mathbb{R}_{\geq 1} \cup \{0\}$
 - Sphere packing bound
- \odot cd_p($K_{n,n}$) = $O(\log n)$ for p > 2
 - Let $C \subseteq \{0,1\}^{O(d)}$ where |C| = n and $\forall c, c' \in C$, $||c c'||_0 \ge \delta$

Proof of $cd_p(K_{n,n}) = \Theta(\log n)$ for p > 2

- \odot $\operatorname{cd}_p(K_{n,n}) = \Omega(\log n) \text{ for } p \in \mathbb{R}_{\geq 1} \cup \{0\}$
 - Sphere packing bound
- \odot $\operatorname{cd}_p(K_{n,n}) = O(\log n)$ for p > 2
 - Let $C \subseteq \{0,1\}^{O(d)}$ where |C| = n and $\forall c, c' \in C$, $||c c'||_0 \ge \delta$

$$O(d) \begin{cases} \vdots & \vdots & \vdots & 1/2 & 1/2 & 1/2 \\ c_1 & c_2 & \cdots & c_n & \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & & \vdots & 1/2 & 1/2 & & 1/2 \end{cases}$$

$$O(d) \begin{cases} 1/2 & 1/2 & 1/2 & \vdots & \vdots & \vdots \\ \vdots & \vdots & \cdots & \vdots & c_1 & c_2 & \cdots & c_n \\ 1/2 & 1/2 & & 1/2 & \vdots & \vdots & \vdots \end{cases}$$

Proof of $cd_p(K_{n,n}) = \Theta(\log n)$ for p > 2

- \circ $\operatorname{cd}_p(K_{n,n}) = \Omega(\log n) \text{ for } p \in \mathbb{R}_{\geq 1} \cup \{0\}$
 - Sphere packing bound
- \odot cd_p($K_{n,n}$) = $O(\log n)$ for p > 2
 - Let $C \subseteq \{0,1\}^{O(d)}$ where |C| = n and $\forall c, c' \in C$, $||c c'||_0 \ge \delta$

Metric	Bound	From
ℓ_0	$sph_0(K_{n,n}) = cd_0(K_{n,n}) = n$	This paper
ℓ_1	$\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$	This paper
$\ell_p, p \in (1,2)$	$\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$	This paper
ℓ_2	$\operatorname{sph}_0(K_{n,n}) = \operatorname{cd}_0(K_{n,n}) = n$ $\Omega(\log n) \le \operatorname{sph}_1(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le n^2$ $\Omega(\log n) \le \operatorname{sph}_p(K_{n,n}) \le \operatorname{cd}_1(K_{n,n}) \le 2n$ $n < \operatorname{sph}_2(K_{n,n}) \le \operatorname{cd}_2(K_{n,n}) < 1.5 \cdot n$	Maehara'91, Frankl-Maehara'88
$\ell_p, p > 2$	$\operatorname{sph}_{p}(K_{n,n}) = \Theta(\operatorname{cd}_{p}(K_{n,n})) = \Theta(\log n)$ $\operatorname{sph}_{\infty}(K_{n,n}) = \operatorname{cd}_{\infty}(K_{n,n}) = 2\log_{2} n$	This paper
ℓ_{∞}	$sph_{\infty}(K_{n,n}) = cd_{\infty}(K_{n,n}) = 2\log_2 n$	Roberts'69

Curious Case of ℓ_1 -metric

Theorem

For any integer d > 0, there exist no two finitely supported random variables X, Y taking values from \mathbb{R}^d such that the following hold.

$$\mathbb{E}_{x_{1},x_{2} \in_{R} X} [\|x_{1} - x_{2}\|_{1}] > \mathbb{E}_{x_{1} \in_{R} X, y_{1} \in_{R} Y} [\|x_{1} - y_{1}\|_{1}]$$

$$\mathbb{E}_{y_{1},y_{2} \in_{R} Y} [\|y_{1} - y_{2}\|_{1}] > \mathbb{E}_{x_{1} \in_{R} X, y_{1} \in_{R} Y} [\|x_{1} - y_{1}\|_{1}]$$

Curious Case of ℓ_1 -metric

Theorem

For any integer d > 0, there exist no two finitely supported random variables X, Y taking values from \mathbb{R}^d such that the following hold.

$$\begin{split} & \underset{x_{1}, x_{2} \in_{R} X}{\mathbb{E}} \left[\|x_{1} - x_{2}\|_{1} \right] > \underset{x_{1} \in_{R} X, y_{1} \in_{R} Y}{\mathbb{E}} \left[\left\|x_{1} - y_{1}\right\|_{1} \right] \\ & \underset{y_{1}, y_{2} \in_{R} Y}{\mathbb{E}} \left[\left\|y_{1} - y_{2}\right\|_{1} \right] > \underset{x_{1} \in_{R} X, y_{1} \in_{R} Y}{\mathbb{E}} \left[\left\|x_{1} - y_{1}\right\|_{1} \right] \end{split}$$

Corollary

For any $\alpha > 0$, there exist no subsets $A, B \subset \mathbb{R}^d$ of n/2 vectors with d < n/2 such that

- \odot For any u, v both in A, or both in B, $||u v||_1 \ge \frac{1}{1 2/n} \cdot \alpha$.
- \odot For any $u \in A$ and $v \in B$, $||u v||_1 < \alpha$.

⊚ Complexity of Closest Pair in ℓ_2 , ℓ_1 , ℓ_0 -metrics when $d \approx \log n$?

- ⊚ Complexity of Closest Pair in ℓ_2 , ℓ_1 , ℓ_0 -metrics when $d \approx \log n$?
 - Need white-box techniques?

- ⊚ Complexity of Closest Pair in ℓ_2 , ℓ_1 , ℓ_0 -metrics when $d \approx \log n$?
 - Need white-box techniques?
- \odot Is $\operatorname{cd}_1(K_{n,n}) = \Omega(n)$?

- ⊚ Complexity of Closest Pair in ℓ_2 , ℓ_1 , ℓ_0 -metrics when $d \approx \log n$?
 - Need white-box techniques?
- ⊚ Is $cd_1(K_{n,n}) = Ω(n)$?
 - Closely related to Kusner's conjecture: $cd_1(K_n) = n/2$
 - Alon-Pudlák'o3: $cd_1(K_n) = \Omega(n/\log n)$
- ⊚ Is $cd_0(K_{n,n}) = O(n)$ over $\{0,1\}$?

- ⊚ Complexity of Closest Pair in ℓ_2 , ℓ_1 , ℓ_0 -metrics when $d \approx \log n$?
 - Need white-box techniques?
- \odot Is $\operatorname{cd}_{\mathbf{1}}(K_{n,n}) = \Omega(n)$?
 - Closely related to Kusner's conjecture: $cd_1(K_n) = n/2$
 - Alon-Pudlák'03: $\operatorname{cd}_1(K_n) = \Omega(n/\log n)$
- ⊚ Is $cd_0(K_{n,n}) = O(n)$ over $\{0,1\}$?
 - We showed: $cd_0(K_{n,n})$ over $\{0,1\}$ is in $[n, n^2]$

© Closest Pair problem is hard in ℓ_p -metric when $d = \omega(\log n)$ and p > 2

© Closest Pair problem is hard in ℓ_p -metric when $d = \omega(\log n)$ and p > 2- even to approximate!

- © Closest Pair problem is hard in ℓ_p -metric when $d = \omega(\log n)$ and p > 2- even to approximate!
- © Closest Pair and Bichromatic Closest Pair are equivalent when $d = \omega \left(\operatorname{cd} \left(K_{n,n} \right) \right)$

- ⊚ Closest Pair problem is hard in ℓ_p -metric when $d = \omega(\log n)$ and p > 2- even to approximate!
- © Closest Pair and Bichromatic Closest Pair are equivalent when $d = \omega(\operatorname{cd}(K_{n,n}))$
- ⊚ Complexity of Closest Pair problem in Euclidean metric for $d \approx \log n$ open!

THANK YOU!