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© What happens when d =~ log n?
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Input: A,B c RY, |[A| = |B| = n

Output: a* € A,b" € B, mil? lla = bll,
ae
beB

© Trivial algorithm: O(n2d)

© Computationally equivalent to determining Minimum
Spanning Tree in £,-metric [Agarwal-Edelsbrunner-
Schwarzkopf-Welzl'91, Krznaric-Levcopoulos-Nilsson’9g]

© Assuming SETH, Bichromatic Closest Pair in £,-metric
cannot be solved in subquadratic time when d = w(log 1)
[Alman-Williams’15]
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Theorem (Informal)

In every €,-metric, Bichromatic Closest Pair is computationally
equivalent to Closest Pair when d = Q (cdy, (K, )).
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d ay| |dn Ay l’Jl bz bn
d* xl x2 ... xn yl yz ... y
’ ’ ’ ’ ’

ay aj a,, bl b - b,

Points from same set:
lla; - a}ll,’.f = lla; = ajll}, + llxi = x;1l; > llxi = ;1]
Points from different sets:

p
lla; = Billp = llai = bl + llxi = vl



Proof Sketch

dy |m| |a2 An b1| bo b,
d* xl x2 cee xn yl yz ... y
’ 7 , ’ ,

ﬂi ) A bl bZ ’ bn

Points from same set:
lla; - a}ll,’.f = lla; = ajll}, + llxi = x;1l; > llxi = ;1]
Points from different sets:

p
lla; - b}”;’ = lla; = bjll, + lx; - y}”fj =1+|la; - bj}
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Curious Case of {1-metric

For any integer d > 0, there exist no two finitely supported random
variables X, Y taking values from R such that the following hold.

E lx-xlhl> E [l -yl

X1,X2€R x1€rX, y1€RY

yl'y[ZEGRY [”]/1 - ]/2”1] g x1€RX[!Ey1€RY [Hxl - ]/1”1]

Corollary

For any a > 0, there exist no subsets A, B c RY of n/2 vectors with
d < n/2 such that

© Forany u,v bothin A, or both in B, ||u — vl|j; > 1_#2/” -,

© Foranyu € Aandv € B, |lu — | < a.



Open Problems

© Complexity of Closest Pair in ¢5, {1, {p-metrics when
d =~ logn?

14



Open Problems

© Complexity of Closest Pair in ¢5, {1, {p-metrics when
d =~ logn?

o Need white-box techniques?

14



Open Problems

© Complexity of Closest Pair in ¢5, {1, {p-metrics when
d =~ logn?

o Need white-box techniques?

© Is cdi(Ky,n) = Q(n)?

14



Open Problems

© Complexity of Closest Pair in ¢5, {1, {p-metrics when
d =~ logn?

o Need white-box techniques?

© Is cdi(Ky,n) = Q(n)?
o Closely related to Kusner’s conjecture: cdi(K,) = n/2
o Alon-Pudlak’os: cdi(K;) = Q(7/logn)

© Is cdo(Ky,n) = O(n) over {0,1}?

14



Open Problems

© Complexity of Closest Pair in ¢5, {1, {p-metrics when
d =~ logn?

o Need white-box techniques?
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o Closely related to Kusner’s conjecture: cdi(K,) = n/2
o Alon-Pudlak’os: cdi(K;) = Q(7/logn)

© Is cdo(Ky,n) = O(n) over {0,1}?
o We showed: cdo(K,, ) over {0, 1} is in [1, n?]
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© Closest Pair problem is hard in £,-metric when
d = w(logn) and p > 2— even to approximate!

© Closest Pair and Bichromatic Closest Pair are equivalent
when d = w (cd (K}, )

© Complexity of Closest Pair problem in Euclidean metric for
d = logn — open!
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