Reversing Color Coding

Karthik C. S.
(Rutgers University)

Joint work with

Boris Bukh
(Carnegie Mellon University)

Bhargav Narayanan
(Rutgers University)
Colored vs. Uncolored Problems
Outline of Talk

- Colored vs. Uncolored Problems
- Closest Pair Problem
Outline of Talk

- Colored vs. Uncolored Problems
- Closest Pair Problem
- Parameterized Set Intersection Problem
Colored versus Uncolored
Uncolored k-Clique Problem:

Input: $G(V, E)$

Output: k-clique in G
Uncolored k-Clique Problem:

Input: $G(V,E)$

Output: k-clique in G

Colored k-Clique Problem:

Input: $G(V_1 \cup V_2 \cup \cdots \cup V_k, E)$

Output: k-clique in G from $V_1 \times V_2 \times \cdots \times V_k$
Uncolored k-Clique Problem:

Input: $G(V, E)$

Output: k-clique in G

Colored k-Clique Problem:

Input: $G(V_1 \cup V_2 \cup \cdots \cup V_k, E)$

Output: k-clique in G from $V_1 \times V_2 \times \cdots \times V_k$

Uncolored k-Clique Problem and Colored k-Clique Problem are computationally equivalent up to $O_k(1)$ factor
Uncolored k-Set Cover Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$

Output: S_{i_1}, \ldots, S_{i_k} whose union is $[n]$
Uncolored k-Set Cover Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$

Output: S_{i_1}, \ldots, S_{i_k} whose **union** is $[n]$

Colored k-Set Cover Problem:

Input: $S^1_1, \ldots, S^1_n, S^2_1, \ldots, S^2_n, \ldots, S^k_1, \ldots, S^k_n \subseteq [n]$

Output: $S^1_{i_1}, \ldots, S^k_{i_k}$ whose **union** is $[n]$
Uncolored k-Set Cover Problem:

Input: $S_1, \ldots, S_n \subseteq [n]$

Output: S_{i_1}, \ldots, S_{i_k} whose **union** is $[n]$

Colored k-Set Cover Problem:

Input: $S^1_1, \ldots, S^1_n, S^2_1, \ldots, S^2_n, \ldots, S^k_1, \ldots, S^k_n \subseteq [n]$

Output: $S^1_{i_1}, \ldots, S^k_{i_k}$ whose **union** is $[n]$

Uncolored and Colored k-Set Cover Problems are
computationally equivalent up to $O_k(1)$ factor
Uncolored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d$, $k \in \mathbb{N}$

Output: $P_1 \cup P_2 \cup \cdots \cup P_k := P$ minimizing some clustering objective
Uncolored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d$, $k \in \mathbb{N}$

Output: $P_1 \dot{\cup} P_2 \dot{\cup} \cdots \dot{\cup} P_k := P$ minimizing some clustering objective

Colored Clustering Problem:

Input: $P \subseteq \mathbb{R}^d$, $k \in \mathbb{N}$, $c : P \rightarrow [r]$

Output: $P_1 \dot{\cup} P_2 \dot{\cup} \cdots \dot{\cup} P_k := P$ minimizing some clustering objective such that each P_i is well-colored by c
Uncolored Clustering Problem:

Input: \(P \subseteq \mathbb{R}^d, k \in \mathbb{N} \)

Output: \(P_1 \cup P_2 \cup \cdots \cup P_k := P \) minimizing some clustering objective

Colored Clustering Problem:

Input: \(P \subseteq \mathbb{R}^d, k \in \mathbb{N}, c : P \rightarrow [r] \)

Output: \(P_1 \cup P_2 \cup \cdots \cup P_k := P \) minimizing some clustering objective such that each \(P_i \) is well-colored by \(c \)

Is Clustering under Fairness constraints computationally harder than Standard Clustering?
Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^d$

Output: $a, b \in P$ minimizing $\|a - b\|_p$
Uncolored Closest Pair Problem:

Input: \(P \subseteq \mathbb{R}^d \)

Output: \(a, b \in P \) minimizing \(\| a - b \|_p \)

Colored Closest Pair Problem:

Input: \(A, B \subseteq \mathbb{R}^d \)

Output: \((a, b) \in A \times B \) minimizing \(\| a - b \|_p \)
Uncolored Closest Pair Problem:

Input: $P \subseteq \mathbb{R}^d$

Output: $a, b \in P$ minimizing $\|a - b\|_p$

Colored Closest Pair Problem:

Input: $A, B \subseteq \mathbb{R}^d$

Output: $(a, b) \in A \times B$ minimizing $\|a - b\|_p$

Is **Colored** Closest Pair computationally **harder** than **Uncolored** Closest Pair?
Set Intersection

Uncolored \(k \)-Set Intersection Problem:

Input: \(S_1, \ldots, S_n \subseteq [n] \)

Output: \(S_{i_1}, \ldots, S_{i_k} \) whose intersection is maximized
Uncolored \(k\)-Set Intersection Problem:

Input: \(S_1, \ldots, S_n \subseteq [n] \)

Output: \(S_{i_1}, \ldots, S_{i_k} \) whose intersection is maximized

Colored \(k\)-Set Intersection Problem:

Input: \(S^1_1, \ldots, S^1_n, S^2_1, \ldots, S^2_n, \ldots, S^k_1, \ldots, S^k_n \subseteq [n] \)

Output: \(S^1_{i_1}, \ldots, S^k_{i_k} \) whose intersection is maximized
Uncolored k-Set Intersection Problem:

Input: $S_1, \ldots, S_n \subseteq [n]

Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

Colored k-Set Intersection Problem:

Input: $S_1^1, \ldots, S_n^1, S_1^2, \ldots, S_n^2, \ldots, S_1^k, \ldots, S_n^k \subseteq [n]

Output: $S_{i_1}^1, \ldots, S_{i_k}^k$ whose intersection is maximized

Is Colored k-Set Intersection problem computationally harder than Uncolored k-Set Intersection problem?
Using Color Coding we can reduce Uncolored version to Colored version
Big Question

Using *Color* Coding we can reduce *Uncolored* version to *Colored* version

Can we reduce *Colored* version to *Uncolored* version?
Outline of Talk

- Colored vs. Uncolored Problems ✓
- Closest Pair Problem
- Parameterized Set Intersection Problem
Closest Pair
Closest Pair problem (CP) in ℓ_p-metric
Closest Pair problem (CP) in ℓ_p-metric

Input: $A \subset \mathbb{R}^d$, $|A| = n$
Closest Pair problem (CP) in ℓ_p-metric

Input: $A \subset \mathbb{R}^d$, $|A| = n$

Output: $a^*, b^* \in A$, $\min_{a,b \in A, a \neq b} \|a - b\|_p$
Closest Pair problem (CP) in ℓ_p-metric

Input: $A \subset \mathbb{R}^d$, $|A| = n$

Output: $a^*, b^* \in A$, $\min_{a, b \in A, a \neq b} \|a - b\|_p$

Trivial algorithm: $O(n^2d)$
Closest Pair problem (CP) in ℓ_p-metric

Input: $A \subset \mathbb{R}^d$, $|A| = n$

Output: $a^*, b^* \in A$, $\min_{a,b \in A \atop a \neq b} \|a - b\|_p$

- **Trivial algorithm:** $O(n^2d)$
- **Bently-Shamos’76:** $2^{O(d)}n \log n$ (for ℓ_2-metric)
Closest Pair problem (CP) in ℓ_p-metric

Input: $A \subset \mathbb{R}^d$, $|A| = n$

Output: $a^*, b^* \in A$, $\min_{a,b \in A, a \neq b} ||a - b||_p$

- **Trivial algorithm:** $O(n^2d)$
 - Bently-Shamos’76: $2^{O(d)}n \log n$ (for ℓ_2-metric)
 - Subcubic algorithms when $d = O(n)$ [ILLP04, MKZ09, GS17]
Closest Pair problem (CP) in ℓ_p-metric

Input: $A \subset \mathbb{R}^d$, $|A| = n$

Output: $a^*, b^* \in A$, $\min_{a, b \in A} \min_{a \neq b} \|a - b\|_p$

- **Trivial algorithm:** $O(n^2 d)$
 - Bently-Shamos' 76: $2^{O(d)} n \log n$ (for ℓ_2-metric)
 - Subcubic algorithms when $d = O(n)$ [ILLP04, MKZ09, GS17]

- What happens when $d \approx \text{polylog } n$?
Bichromatic Closest Pair problem (BCP) in ℓ_p metric
Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input: $A, B \subset \mathbb{R}^d$, $|A| = |B| = n$
Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input: $A, B \subset \mathbb{R}^d$, $|A| = |B| = n$

Output: $a^* \in A, b^* \in B$, $\min_{a \in A, b \in B} \|a - b\|_p$
Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input: $A, B \subset \mathbb{R}^d$, $|A| = |B| = n$

Output: $a^* \in A$, $b^* \in B$, $\min_{a \in A, b \in B} \|a - b\|_p$

Trivial algorithm: $O(n^2d)$
Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input: $A, B \subset \mathbb{R}^d, |A| = |B| = n$

Output: $a^* \in A, b^* \in B, \min_{a \in A, b \in B} \|a - b\|_p$

- **Trivial algorithm:** $O(n^2d)$

- **Computationally equivalent** to determining Minimum Spanning Tree in ℓ_p-metric [AESW91, KLN99]
Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input: $A, B \subset \mathbb{R}^d, |A| = |B| = n$

Output: $a^* \in A, b^* \in B, \min_{a \in A, b \in B} \|a - b\|_p$

Trivial algorithm: $O(n^2 d)$

Computationally equivalent to determining Minimum Spanning Tree in ℓ_p-metric [AESW91, KLN99]

What happens when $d \approx \text{polylog } n$?
Bichromatic Closest Pair problem (BCP) in ℓ_p metric

Input: $A, B \subset \mathbb{R}^d$, $|A| = |B| = n$

Output: $a^* \in A, b^* \in B$, $\min_{a \in A, b \in B} \|a - b\|_p$

- **Trivial algorithm:** $O(n^2d)$

- **Computationally equivalent** to determining Minimum Spanning Tree in ℓ_p-metric [AESW91, KLN99]

- What happens when $d \approx \text{polylog } n$?
- What happens when $d = \omega(1)$?
Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.
Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \geq 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:
Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \geq 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- \bigcirc BCP in ℓ_p-metric when $d = \omega(\log n)$ [AW15]
Bichromatic Closest Pair under Fine-Grained Lens

Strong Exponential Time Hypothesis (SETH)

For every $\varepsilon > 0$, no algorithm running in $2^{m(1-\varepsilon)}$ time can solve k-SAT on m variables.

Let $p \geq 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- \odot BCP in ℓ_p-metric when $d = \omega(\log n)$ [AW15]

- \odot $(1 + \delta)$-approximate BCP in ℓ_p-metric when $d = \omega(\log n)$ [R18]
Let $p \geq 1$. Assuming SETH, for every $\varepsilon > 0$, no $n^{2-\varepsilon}$ time algorithm can solve:

- BCP in ℓ_p-metric when $d = \omega(\log n)$ [AW15]
- $(1 + \delta)$-approximate BCP in ℓ_p-metric when $d = \omega(\log n)$ [R18]
- BCP in ℓ_p-metric when $d = 2^{O(\log^* n)}$ [W18, C18]
BCP is at least as hard as CP in every ℓ_p-metric for all d.

Theorem (K-Manurangsi'18) ⊚ BCP and CP in ℓ_p-metric are computationally equivalent when $3 = (\log d)^\Omega(1)$.

⊚ $(1 + \epsilon)$-approximate BCP can be solved by $\tilde{O}(\epsilon)$ calls to $(1 + \epsilon)$-approximate CP in ℓ_p-metric when $3 = \epsilon$.

BCP is at least as hard as CP in every ℓ_p-metric for all d.

\[\text{CP} \]
BCP is at least as hard as CP in every ℓ_p-metric for all d.
BCP is at least as hard as CP in every ℓ_p-metric for all d.
BCP is at least as hard as CP in every ℓ_p-metric for all d.
Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_p-metric for all d.

Theorem (K-Manurangsi'18) \blacklozenge

BCP and CP in ℓ_p-metric are computationally equivalent when $3 = (\log =)$ $\Omega(1)$.

$\blacklozenge (1 + \varepsilon)$-approximate BCP can be solved by $\tilde{\Theta}(\sqrt{\varepsilon})$ calls to $(1 + \varepsilon)$-approximate CP in ℓ_p-metric when $3 = (\log =)$.

CP

BCP
BCP is at least as hard as CP in every ℓ_p-metric for all d.

\text{Theorem \ (K-Manurangsi'18)}

\text{\textcircled{BCP} and \text{CP} in ℓ_p-metric are computationally equivalent when $3 = (\log n)^{\Omega(1)}$.}

\text{\textcircled{BCP}} can be solved by $\tilde{O}(\sqrt{n})$ calls to \text{\textcircled{CP}} in ℓ_p-metric when $3 = (\log n)$.

\text{CP}
Equivalence of Bichromatic Closest Pair and Closest Pair

BCP is at least as hard as CP in every ℓ_p-metric for all d.

Theorem (K-Manurangsi'18)

\blacklozenge

BCP and CP in ℓ_p-metric are computationally equivalent when $3 = (\log n)^{\Omega(1)}$.

\blacklozenge

$(1 + \varepsilon)$-approximate BCP can be solved by $\tilde{O}(\sqrt{n})$ calls to $(1 + \varepsilon)$-approximate CP in ℓ_p-metric when $3 = (\log n)^{\Omega(1)}$.

14
BCP is at least as hard as CP in every ℓ_p-metric for all d.

Theorem (K-Manurangsi’18)

- BCP and CP in ℓ_p-metric are computationally equivalent when $d = (\log n)^{\Omega(1)}$.
- $(1 + \delta)$-approximate BCP can be solved by $\tilde{O}(\sqrt{n})$ calls to $(1 + \delta)$-approximate CP in ℓ_p-metric when $d = \omega(\log n)$.
Every $(D_1, \ldots, D_i) \in \mathcal{P} \times \cdots \times \mathcal{P}$ has C common neighbors in \mathcal{P}.

Every $\mathcal{F} \subset \mathcal{P} \cap \mathcal{P}$ has at most $C - 1$ common neighbors in \mathcal{P}, if $\mathcal{F} \cap \mathcal{P} = \emptyset$ for some \mathcal{P} in \mathcal{P}.
Every \((u_1, \ldots, u_k)\) in \(U_1 \times \cdots U_k\) has \(t\) common neighbors in \(W\).
Every (u_1, \ldots, u_k) in $U_1 \times \cdots \times U_k$ has t common neighbors in W.

Every $X \subset U$ ($|X| = k$) has at most $t - 1$ common neighbors in W if $X \cap U_i = \emptyset$ for some $i \in [k]$.

Panchromatic Graphs
Every \((u_1, \ldots, u_k)\) in \(U_1 \times \cdots U_k\) has \(t\) common neighbors in \(W\).

Every \(X \subset U\) \((|X| = k)\) has at most \(t - 1\) common neighbors in \(W\) if \(X \cap U_i = \emptyset\) for some \(i \in [k]\).

Do they exist?
Panchromatic Graphs when $k = 2$

Every (D_1, D_2) in $\mathbb{D} \times \mathbb{D}$ has C common neighbors in \mathbb{H},

Every $\{D, D'\} \subset \mathbb{D}$ has at most $C - 1$ common neighbors in \mathbb{H},
Panchromatic Graphs when $k = 2$

Every (u_1, u_2) in $U_1 \times U_2$ has t common neighbors in W
Panchromatic Graphs when $k = 2$

Every (u_1, u_2) in $U_1 \times U_2$ has t common neighbors in W

Every $\{u, u'\} \subset U_i$ has at most $t - 1$ common neighbors in W
Panchromatic Graphs when $k = 2$

Every (u_1, u_2) in $U_1 \times U_2$ has t common neighbors in W

Every $\{u, u'\} \subset U_i$ has at most $t - 1$ common neighbors in W

Do they exist?
Bichromatic Closest Pair in \(\{0, 1\}^d \)
Bichromatic Closest Pair in $\{0, 1\}^d$

Points

Coordinates

Edge: $x \in A \cup B$ and $i \in [d]$ if $x_i = 1$
Bichromatic Closest Pair in $\{0,1\}^d$

Edge: $x \in A \cup B$ and $i \in [d]$ if $x_i = 1$

Minimizing Distance \iff
Maximizing Inner Product \iff
Maximizing Common Neighbors
Panchromatic Graph Composition

Points

Coordinates

\[3 \text{ copies} / \text{one.taboldstyle/eight.taboldstyle} \]
Panchromatic Graph Composition

Points

Coordinates

A

B

[d]

W

d copies
Panchromatic Graphs when $k = 2$ [K-Manurangsi’18]

Many (u_1, u_2) in $U_1 \times U_2$ has t common neighbors in W

Every $\{u, u'\} \subset U_i$ has at most $t - 1$ common neighbors in W
Construction of Panchromatic graphs when $k = 2$

Polynomials are our friends.

– TCS Folklore
Construction of Panchromatic graphs when $k = 2$

- $U_1 :=$ set of degree d univariate polynomials over \mathbb{F}_q
Construction of Panchromatic graphs when $k = 2$

- $U_1 := \text{set of degree } d \text{ univariate polynomials over } \mathbb{F}_q$
- $U_2 := \{x^{d+1} + p(x) \mid p(x) \in U_1\}$
Construction of Panchromatic graphs when $k = 2$

- $U_1 :=$ set of degree d univariate polynomials over \mathbb{F}_q
- $U_2 := \{ x^{d+1} + p(x) \mid p(x) \in U_1 \}$
- $W = \mathbb{F}_q \times \mathbb{F}_q$
Construction of Panchromatic graphs when $k = 2$

- $U_1 := \text{set of degree } d \text{ univariate polynomials over } \mathbb{F}_q$
- $U_2 := \{x^{d+1} + p(x) \mid p(x) \in U_1\}$
- $W = \mathbb{F}_q \times \mathbb{F}_q$
- $(p, (\alpha, \beta)) \in U \times W$ is an edge $\iff p(\alpha) = \beta$

Polynomials are our friends. – TCS Folklore
Panchromatic Graphs when $k = 2$

They exist! $(?, ?') \in \mathbb{Z}_2^8$ have $(?, ?')$ as common neighbor \Rightarrow is root of $? - ?'$ $\Rightarrow (?, ?') \in \mathbb{Z}_2^8$ have at most 3 common neighbors $(?, G_{3+1} + ?') \in \mathbb{Z}_1^2 \times \mathbb{Z}_2^2$ have $3+1$ common neighbors $\Leftrightarrow G_{3+1} + ?' - ?'$ has $3+1$ distinct roots

Number of such polynomials: $(\mathbb{F}_q \times \mathbb{F}_q)$
Panchromatic Graphs when $k = 2$

$\exists F \times F$ as common neighbor

$(p, p') \in U_i$ have (α, β)

$\Rightarrow \alpha$ is root of $p - p'$

$\Rightarrow (p, p') \in U_i$ have at most d common neighbors

Polynomials

$F_q \times F_q$
Panchromatic Graphs when \(k = 2 \)

\[(p, p') \in U_i \text{ have } (\alpha, \beta) \text{ as common neighbor} \]

\[\Rightarrow \alpha \text{ is root of } p - p' \]

\[\Rightarrow (p, p') \in U_i \text{ have at most } d \text{ common neighbors} \]

\[(p, x^{d+1} + p') \in U_1 \times U_2 \]

have \(d + 1 \) common neighbors

\[\Leftrightarrow x^{d+1} + p' - p' \text{ has } d + 1 \text{ distinct roots} \]

Number of such polynomials: \(\binom{q}{d+1} \)
Panchromatic Graphs when \(k = 2 \)

Let \(\mathbb{F}_q \times \mathbb{F}_q \) be a set of polynomials. If \((p, p') \in U_i \) have \((\alpha, \beta)\) as common neighbor, then \(\alpha \) is root of \(p - p' \). This implies \((p, p') \in U_i \) have at most \(d \) common neighbors.

Let \((p, x^{d+1} + p') \in U_1 \times U_2 \) have \(d + 1 \) common neighbors, which means \(x^{d+1} + p' - p' \) has \(d + 1 \) distinct roots.

Number of such polynomials: \(\binom{q}{d+1} \)

They exist!
Theorem (K-Manurangsi’18)

- BCP and CP in ℓ_p-metric are computationally equivalent when $d = (\log n)^{\Omega(1)}$.

- $(1 + \delta)$-approximate BCP can be solved by $\tilde{O}(\sqrt{n})$ calls to $(1 + \delta)$-approximate CP in ℓ_p-metric when $d = \omega(\log n)$.

<table>
<thead>
<tr>
<th>Theorem (K-Manurangsi’18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ BCP and CP in ℓ_p-metric are computationally equivalent when $d = (\log n)^{\Omega(1)}$.</td>
</tr>
<tr>
<td>☐ $(1 + \delta)$-approximate BCP can be solved by $\tilde{O}(\sqrt{n})$ calls to $(1 + \delta)$-approximate CP in ℓ_p-metric when $d = \omega(\log n)$.</td>
</tr>
</tbody>
</table>
Do they exist?

Many \((u_1, \ldots, u_k)\) in \(U_1 \times \cdots \times U_k\) has \(t\) common neighbors in \(W\).

Every \(X \subset U\) (\(|X| = k\)) has at most \(t - 1\) common neighbors in \(W\) if \(X \cap U_i = \emptyset\) for some \(i \in [k]\).
Outline of Talk

- **Colored** vs. **Uncolored Problems** ✔
- Closest Pair Problem ✔
- Parameterized Set Intersection Problem
Set Intersection
k-Set Intersection

Input: \(S_1, \ldots, S_n \subseteq [n] \)

Output: \(S_{i_1}, \ldots, S_{i_k} \) whose intersection is maximized
k-Set Intersection

Input: $S_1, \ldots, S_n \subseteq [n]$

Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

- NP World: Ruling out PTAS (assuming NP \neq P) is open!
k-Set Intersection

Input: \(S_1, \ldots, S_n \subseteq [n] \)

Output: \(S_{i_1}, \ldots, S_{i_k} \) whose intersection is maximized

- NP World: Ruling out PTAS (assuming \(\text{NP} \neq \text{P} \)) is open!
- No poly factor approximation poly time algorithm assuming "weak-ETH" [Xavier'12]
 - Relies on Quasi-random PCP of [Khot’06]
k-Set Intersection

Input: $S_1,\ldots,S_n \subseteq [n]$

Output: S_{i_1},\ldots,S_{i_k} whose intersection is maximized

- NP World: Ruling out PTAS (assuming NP\neqP) is open!
- No poly factor approximation poly time algorithm assuming "weak-ETH"[Xavier’12]
 - Relies on Quasi-random PCP of [Khot’06]
- $W[1]$$\neq$FPT: No $F(k)$ factor approximation $T(k)\cdot\text{poly}(n)$ time algorithm [Lin’15]
k-Set Intersection

Input: $S_1, \ldots, S_n \subseteq [n]$

Output: S_{i_1}, \ldots, S_{i_k} whose intersection is maximized

- **NP World:** Ruling out PTAS (assuming NP\neqP) is open!
- **No poly factor approximation poly time algorithm assuming** "weak-ETH" [Xavier’12]
 - Relies on Quasi-random PCP of [Khot’06]
- **W[1]\neqFPT:** No $F(k)$ factor approximation $T(k) \cdot \text{poly}(n)$ time algorithm [Lin’15]
- **ETH:** No $F(k)$ factor approximation $n^{\Omega(\sqrt{k})}$ time algorithm [Lin’15]
Colored k-Set Intersection

Input: $S_1^1, \ldots, S_n^1, S_1^2, \ldots, S_n^2, \ldots, S_1^k, \ldots, S_n^k \subseteq [n]$

Output: $S_{i_1}^1, \ldots, S_{i_k}^k$ whose intersection is maximized
Colored k-Set Intersection

Input: $S^1_1, \ldots, S^n_1, S^2_1, \ldots, S^n_2, \ldots, S^k_1, \ldots, S^n_k \subseteq [n]$

Output: $S^1_{i_1}, \ldots, S^k_{i_k}$ whose intersection is maximized

◎ NP World: Essentially same as Extended Label Cover
Colored k-Set Intersection

Input: $S_1^1, \ldots, S_n^1, S_1^2, \ldots, S_n^2, \ldots, S_1^k, \ldots, S_n^k \subseteq [n]$

Output: $S_{i_1}^1, \ldots, S_{i_k}^k$ whose intersection is maximized

- NP World: Essentially same as Extended Label Cover
- $W[1] \neq \text{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \text{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi’18]
Colored k-Set Intersection

Input: $S^1_1, \ldots, S^1_n, S^2_1, \ldots, S^2_n, \ldots, S^k_1, \ldots, S^k_n \subseteq [n]$

Output: $S^1_{i_1}, \ldots, S^k_{i_k}$ whose intersection is maximized

- NP World: Essentially same as Extended Label Cover
- $W[1] \neq FPT$: No $F(k)$ factor approximation $T(k) \cdot \text{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi’18]
- ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [K-Laekhanukit-Manurangsi’18]
Colored k-Set Intersection

Input: $S^1_1, \ldots, S^1_n, S^2_1, \ldots, S^2_n, \ldots, S^k_1, \ldots, S^k_n \subseteq [n]$

Output: $S^1_{i_1}, \ldots, S^k_{i_k}$ whose intersection is maximized

- NP World: Essentially same as Extended Label Cover

- $W[1] \neq$ FPT: No $F(k)$ factor approximation $T(k) \cdot \text{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi’18]

- ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [K-Laekhanukit-Manurangsi’18]

- SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [K-Laekhanukit-Manurangsi’18]
Colored k-Set Intersection

Input: $S^1_1, \ldots, S^1_n, S^2_1, \ldots, S^2_n, \ldots, S^k_1, \ldots, S^k_n \subseteq [n]$

Output: $S^1_{i_1}, \ldots, S^k_{i_k}$ whose intersection is maximized

- NP World: Essentially same as Extended Label Cover
- $W[1] \neq \text{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \text{poly}(n)$ time algorithm [K-Laekhanukit-Manurangsi’18]
- ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [K-Laekhanukit-Manurangsi’18]
- SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [K-Laekhanukit-Manurangsi’18]
- Tight running time lower bounds under $W[1] \neq \text{FPT}$, ETH, and SETH for exact version are straightforward!
Our Result: Equivalence

Theorem (Bukh-K-Narayanan’21)

- k-Set Intersection and Colored k-Set Intersection are computationally equivalent up to $O_k(1)$ factors in run time.
Our Result: Equivalence

Theorem (Bukh-K-Narayanan’21)

- k-Set Intersection and Colored k-Set Intersection are computationally equivalent up to $O_k(1)$ factors in run time.

- c-approximation of k-Set Intersection is harder than $c/h(k)$-approximation of Colored k-Set Intersection.
They exist! Many \((D_1, \ldots, D_m)\) in \(*_1 \times \cdots \times *_{m'}\) has \(C\) common neighbors in \(*\), every \(- \subseteq *_{m'}\) has at most \(C/2\) common neighbors in \(*\), if \(- \cap *_{m'} = \emptyset\) for some \(8\in\[\]\).
Many \((u_1, \ldots, u_k)\) in \(U_1 \times \cdots U_k\) has \(t\) common neighbors in \(W\)
Many \((u_1, \ldots, u_k)\) in \(U_1 \times \cdots U_k\) has \(t\) common neighbors in \(W\).

Every \(X \subset U\) (\(|X| = k\)) has at most \(t/F(k)\) common neighbors in \(W\) if \(X \cap U_i = \emptyset\) for some \(i \in [k]\).
Many \((u_1, \ldots, u_k)\) in \(U_1 \times \cdots \times U_k\) has \(t\) common neighbors in \(W\).

Every \(X \subset U\) (\(|X| = k\)) has at most \(t/F(k)\) common neighbors in \(W\) if \(X \cap U_i = \emptyset\) for some \(i \in [k]\).

They exist!
Set Intersection Lower Bounds

- \(W[1] \neq \text{FPT} \): No \(F(k) \) factor approximation \(T(k) \cdot \text{poly}(n) \) time algorithm [Lin’15]

- \(\text{ETH} \): No \(F(k) \) factor approximation \(n^{\Omega(k)} \) time algorithm [Bukh-K-Narayanan’21]

- \(\text{SETH} \): No \(F(k) \) factor approximation \(n^{k-\epsilon} \) time algorithm [Bukh-K-Narayanan’21]
Colored k-Set Intersection Problem

\[C_i = \{S_1^i, \ldots, S_n^i\} \]
Panchromatic Graph Composition
Panchromatic Graph Composition
Edge between S^j_i and $(a, w) \iff a \in S^j_i$ and edge between S^j_i and w in Panchromatic Graph
Polynomials are still our friends.

– TCS Folklore
Construction of Panchromatic graphs

Pick \(w_1, \ldots, w_k \) random \(k \)-variate polynomials over \(\mathbb{F}_q \) of degree at most \(D \).
Pick w_1, \ldots, w_k random k-variate polynomials over \mathbb{F}_q of degree at most D

U_i^0 is a set of n random k-variate polynomials over \mathbb{F}_q of degree at most d

$U_i := w_i + U_i^0$
Construction of Panchromatic graphs

- Pick w_1, \ldots, w_k random k-variate polynomials over \mathbb{F}_q of degree at most D

- U_i^0 is a set of n random k-variate polynomials over \mathbb{F}_q of degree at most d

- $U_i := w_i + U_i^0$

- $W = \mathbb{F}_q^k$
Construction of Panchromatic graphs

Pick w_1, \ldots, w_k random k-variate polynomials over \mathbb{F}_q of degree at most D

U_i^0 is a set of n random k-variate polynomials over \mathbb{F}_q of degree at most d

$U_i := w_i + U_i^0$

$W = \mathbb{F}_q^k$

$(p + w_i, \alpha) \in U \times W$ is an edge \iff α is a root of $p + w_i$
Construction of Panchromatic graphs

- Pick w_1, \ldots, w_k random k-variate polynomials over \mathbb{F}_q of degree at most D

- U^0_i is a set of n random k-variate polynomials over \mathbb{F}_q of degree at most d

- $U_i := w_i + U^0_i$

- $W = \mathbb{F}_q^k$

- $(p + w_i, \alpha) \in U \times W$ is an edge $\Leftrightarrow \alpha$ is a root of $p + w_i$

- $w_i + p$ is uniform on $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$
Theorem (Bukh-K-Narayanan’21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let Z be the (random) number of common roots over \mathbb{F}_q^k of k independently chosen k-variate random \mathbb{F}_q-polynomials of degree d. Then, as $q \to \infty$, we have
Theorem (Bukh-K-Narayanan’21)

For $k, d \in \mathbb{N}$ and a prime power $q \in \mathbb{N}$, let Z be the (random) number of common roots over \mathbb{F}_q^k of k independently chosen k-variate random \mathbb{F}_q-polynomials of degree d. Then, as $q \to \infty$, we have

$$\Pr[Z = d^k] \geq \frac{1 - o(1)}{(d^k)!},$$
Theorem (Bukh-K-Narayanan’21)

For \(k, d \in \mathbb{N} \) and a prime power \(q \in \mathbb{N} \), let \(Z \) be the (random) number of common roots over \(\mathbb{F}_q^k \) of \(k \) independently chosen \(k \)-variate random \(\mathbb{F}_q \)-polynomials of degree \(d \). Then, as \(q \to \infty \), we have

\[
\Pr[Z = d^k] \geq \frac{1 - o(1)}{(d^k)!},
\]
as well as

\[
\Pr[Z > d^k] = O(q^{-d}).
\]
Fix $S = \{w_i + p_i \in U_i | i \in [k]\}$
Fix $S = \{ w_i + p_i \in U_i | i \in [k] \}$

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$
Analysis of Construction

Fix $S = \{w_i + p_i \in U_i | i \in [k]\}$

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

- $\Pr[|N(S)| > D^k] = O(q^{-D})$
 - By parameter choice, number of such sets $< 1/q$
Fix $S = \{w_i + p_i \in U_i | i \in [k]\}$

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$
- $\Pr[|N(S)| > D^k] = O(q^{-D})$
 - By parameter choice, number of such sets $< 1/q$
- $\Pr[|N(S)| = D^k] = (2(D^k)!)^{-1}$
Fix $S = \{w_i + p_i \in U_i | i \in [k]\}$

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k] \leq D$

- $\Pr[|N(S)| > D^k] = O(q^{-D})$

 - By parameter choice, number of such sets $< 1/q$

- $\Pr[|N(S)| = D^k] = (2(D^k)!)^{-1}$

Fix $S \subseteq U, |S| = k$ and $S \cap U_1 = \emptyset$.
Analysis of Construction

Fix $S = \{w_i + p_i \in U_i | i \in [k]\}$

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$

- $\Pr[|N(S)| > D^k] = O(q^{-D})$
 - By parameter choice, number of such sets $< 1/q$

- $\Pr[|N(S)| = D^k] = (2(D^k)!)^{-1}$

Fix $S \subseteq U$, $|S| = k$ and $S \cap U_1 = \emptyset$.

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$ or $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq d}$
Fix $S = \{w_i + p_i \in U_i | i \in [k]\}$

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$
- $\Pr[|N(S)| > D^k] = O(q^{-D})$
 - By parameter choice, number of such sets < $1/q$
- $\Pr[|N(S)| = D^k] = \frac{1}{(D^k)!}$

Fix $S \subseteq U$, $|S| = k$ and $S \cap U_1 = \emptyset$.

- $|N(S)|$ is distributed as the number of \mathbb{F}_q-solutions of k random polynomials from $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq D}$ or $\mathbb{F}_q[X_1, \ldots, X_k]_{\leq d}$
- $\Pr[|N(S)| > dD^{k-1}] = O(q^{-d})$
Many \((u_1, \ldots, u_k)\) in \(U_1 \times \cdots \times U_k\) has \(t\) common neighbors in \(W\).

Every \(X \subset U\) (\(|X| = k\)) has at most \(t/F(k)\) common neighbors in \(W\) if \(X \cap U_i = \emptyset\) for some \(i \in [k]\).

They exist!

- $W[1] \neq \text{FPT}$: No $F(k)$ factor approximation $T(k) \cdot \text{poly}(n)$ time algorithm [Lin’15]

- ETH: No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan’21]

- SETH: No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan’21]
Set Intersection Lower Bounds

- **W[1]≠FPT:** No $F(k)$ factor approximation $T(k)\cdot\text{poly}(n)$ time algorithm [Lin’15] **New Proof!**

- **ETH:** No $F(k)$ factor approximation $n^{\Omega(k)}$ time algorithm [Bukh-K-Narayanan’21]

- **SETH:** No $F(k)$ factor approximation $n^{k-\varepsilon}$ time algorithm [Bukh-K-Narayanan’21]
Starting from \(k \)-Clique

\[V = [n] \]

\[E \]

Input: \(G([n], E) \)
Starting from k-Clique

Input: $G([n], E)$

If G has a k-clique then there are $\binom{k}{2}$ vertices in E which in total have k neighbors.
Starting from k-Clique

Input: $G([n], E)$

If G has a k-clique then there are $\binom{k}{2}$ vertices in E which in total have k neighbors.

If G has no k-clique then any $\binom{k}{2}$ vertices in E has totally at least $k + 1$ neighbors.
Threshold Graph

\[A = [n] \]

\[V = [n] \]

Every vertex in \(A \) has at least \(\Omega \left(\frac{1}{\ell} \right) \) common neighbors in \(V \).

Every \(v \in V \) has at most \(\ell \) common neighbors in \(A \).
Threshold Graph

Every k vertices in V has at least $n^{\Omega(1/k)}$ common neighbors in A.
Threshold Graph

$$A = [n]$$

$$V = [n]$$

Every k vertices in V has at least $n^{\Omega(1/k)}$ common neighbors in A

Every $k + 1$ vertices in V has at most $k^{O(k)}$ common neighbors in A
Threshold Graph Composition

\[A = [n] \]

\[V = [n] \]

\[E \]

\((4,0) \in \times \) is an edge \(\iff \exists E, E' \in + \) such that 0 and 4 are common neighbors of \(E \) and \(E' \)
Threshold Graph Composition

\[A = [n] \]

\[V = [n] \]

\[E \]

\[(e, a) \in E \times A \text{ is an edge } \iff \exists v, v' \in V \text{ such that } \]

\[a \text{ and } e \text{ are common neighbors of } v \text{ and } v' \]
Completeness of Reduction

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G

- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph
Completeness of Reduction

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G

- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph

- Every $a \in A'$ is also a common neighbor of $e_{v_i,v_j} \in E$
Completeness of Reduction

- Let \(v_1, \ldots, v_k \in V \) be vertices of \(k\)-clique in \(G \).
- Let \(A' \subseteq A \) be common neighbors of \(v_1, \ldots, v_k \) in Threshold graph.
- Every \(a \in A' \) is also a common neighbor of \(e_{v_i,v_j} \in E \).

Completeness of Threshold Graph

Every \(k \) vertices in \(V \) has at least \(n^{\Omega(1/k)} \) common neighbors in \(A \).
Soundness of Reduction

Fix \((e_1, \ldots, e_{\binom{k}{2}}) \in E\) and let \(A' \subseteq A\) be its set of common neighbors.
Soundness of Reduction

- Fix \((e_1, \ldots, e_{\binom{k}{2}}) \in E\) and let \(A' \subseteq A\) be its set of common neighbors.
- Let \(V' \subseteq V\) be set of total neighbors of \((e_1, \ldots, e_{\binom{k}{2}})\) in \(V\).
- \(|V'| \geq k + 1\)
Soundness of Reduction

- Fix \((e_1, \ldots, e_{k(2)}) \in E\) and let \(A' \subseteq A\) be its set of common neighbors.
- Let \(V' \subseteq V\) be set of total neighbors of \((e_1, \ldots, e_{k(2)})\) in \(V\).
- \(|V'| \geq k + 1\)
- \(A'\) is a subset of the common neighbors of \(V'\) in Threshold graph.
Soundness of Reduction

- Fix \((e_1, \ldots, e_{\binom{k}{2}}) \in E\) and let \(A' \subseteq A\) be its set of common neighbors.
- Let \(V' \subseteq V\) be set of total neighbors of \((e_1, \ldots, e_{\binom{k}{2}})\) in \(V\).
- \(|V'| \geq k + 1\).
- \(A'\) is a subset of the common neighbors of \(V'\) in Threshold graph.

Soundness of Threshold Graph

Every \(k + 1\) vertices in \(V\) has at most \(k^{O(k)}\) common neighbors in \(A\).
Threshold Graph

\[A = \{1, 2, \ldots, n\} \]
\[V = \{1, 2, \ldots, n\} \]

Every \(k \) vertices in \(V \) has at least \(n^{\Omega(1/k)} \) common neighbors in \(A \)

Every \(k + 1 \) vertices in \(V \) has at most \(k^{O(k)} \) common neighbors in \(A \)
Threshold Graph

\[A = [n] \]

\[V = [n] \]

Every vertex in \(V \) has at least \(\Omega \left(\frac{1}{\epsilon} \right) \) common neighbors in \(A \).

Every \(\epsilon + 1 \) vertices in \(V \) has at most \(\epsilon \) common neighbors in \(A \).
Outline of Talk

- Colored vs. Uncolored Problems ✓
- Closest Pair Problem ✓
- Parameterized Set Intersection Problem ✓
Key Takeaways

- Panchromatic Graphs Exist!
Key Takeaways

- **Panchromatic** Graphs Exist!
- **Tight** Running Time Lower Bounds for *Approximating* Parameterized Set Intersection
Key Takeaways

- **Panchromatic** Graphs Exist!
- **Tight** Running Time Lower Bounds for Approximating Parameterized Set Intersection
- Can we find explicit Panchromatic Graphs?
Key Takeaways

- **Panchromatic** Graphs Exist!
- **Tight** Running Time Lower Bounds for *Approximating* Parameterized Set Intersection
- Can we find **explicit** Panchromatic Graphs?
- Are there more **applications** for these graphs?
THANK YOU!