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Gauss

Given four points in the Euclidean plane,
what is the cheapest network connecting them?
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Steiner Tree in Euclidean Plane
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Quest for Computing Steiner Tree

So little we know and yet, we will continue to explore!
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Steiner Tree: Formalism

} (Γ,Δ) is a metric space

} Steiner Tree of - ⊆ Γ is a Tree )(- ∪ (, �):

◦ ( ⊆ Γ

◦ Cost of ) is minimized:

cost()) =
∑
(D,E)∈�

Δ(D, E)

Steiner Points

Terminals
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Steiner Tree Computation

} (Γ,Δ) is a metric space

} Input: - ⊆ Γ and S⊆ Γ

} Output: A Tree )(- ∪ (, �):

◦ ( ⊆ Γ

◦ Cost of ) is minimized (over all possible ( and �):

cost()) =
∑
(D,E)∈�

Δ(D, E)

Continuous Steiner Tree
Discrete

X
S

Possible that S= Γ
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Exact Computation

} DST is NP-hard in General metrics (Karp’72)
◦ DST is NP-hard in ℓ∞-metric

} CST is NP-hard in ℓ2-metric (Garey-Graham-Johnson’77)
◦ Even in the plane
◦ DST is NP-hard in ℓ2-metric

} CST is NP-hard in ℓ1-metric (Garey-Johnson’77)
◦ Even in the plane
◦ DST is NP-hard in ℓ1-metric

} CST is NP-hard in ℓ0-metric (Foulds-Graham’82)
◦ DST is NP-hard in ℓ0-metric
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Approximation Algorithms

} 2-approximation for DST and CST in every metric
(Gilbert-Pollak’68)
◦ Compute Minimum Spanning Tree of only Terminals

} 1.39-approximation for DST in General metrics
(Byrka-Grandoni-Rothvoß-Sanitá’10)

} PTAS for CST in fixed dimensional ℓ2 metric (Arora’96)
◦ PTAS for CST in fixed dimensional ℓ? metrics
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Hardness of Approximation

} DST in General metrics is NP-hard to approximate to 1.01
factor (Chlebík-Chlebíková’08)

} DST and CST in ℓ0 metric are NP-hard to approximate to
1.004 factor (Day-Johnson-Sankoff’86 and Wareham’95)

} DST and CST in ℓ1 metric are NP-hard to approximate to
1.004 factor (Trevisan’97)
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Hardness of Approximation: Questions

Euclidean metric

Can we rule out PTAS for CST in high dimensional ℓ2-metric?
(i.e., Ω(log =) dimensions)

Can we rule out PTAS for DST in high dimensional ℓ2-metric?
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Hardness of Approximation: Questions
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Hardness of Approximation: Questions

My Project
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Spectrum of Computational Problems

Structure

Circuit-SAT

CSP

Set Cover
Max Coverage

Max Cut
Independent Set
Clique
Vertex Cover

Label Cover
3-SAT
3-LIN

Clustering
Steiner Tree
TSP

UGC

JCH

age

AS’19
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Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in ℓ?-metrics?

What is the right reduction for DST in ℓ?-metrics?

What is the connection between DST and CST in ℓ?-metrics?
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Our Results

Theorem (Fleischmann–Gavva–K’23)
Assuming NP≠P, no PTAS for DST in every ℓ?-metric.

} Above result holds even in $(log =) dimensions

} No PTAS for DST in Euclidean metric
◦ Proof gives new insights into the difficulty of proving

hardness for Euclidean Steiner Tree
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Our Results

Theorem (Fleischmann–Gavva–K’23)
For every metric space, and every � > 0, there is a
poly(=, 1/�)-time reduction from CST to DST, preserving the
minimum Steiner tree cost to (1 + �) factor.

} DST is harder than CST
◦ Proving DST hardness is a stepping stone

} Key ingredient: Steiner Tree decomposition through
Terminal-Terminal edges (Bartal-Gottlieb’21)
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Warm up: Hamming Metric

Vertex Cover:

} Input: Graph �(+, �)

} Objective: Min subset of + covering �

Theorem (Chlebík-Chlebíková’06)
It is NP-hard to distinguish on 4-regular graphs:
YES: Vertex cover is of size at most 0.52=
NO: Vertex cover is of size at least 0.53=

18
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Inapproximability of DST in Hamming metric
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Analysis of the Reduction

} Steiner Points have to be the vertices in Vertex Cover

◦ Non-trivial in case of CST

} Completeness: Steiner Tree costs 0.52= + 2=

} Soundness: Steiner Tree costs 0.53= + 2=

Theorem
Given input - ⊆ {0, 1}= of CST or input -,S := {®41 , . . . , ®4=} of
DST. It is NP-hard to distinguish:
YES: Cost of Steiner Tree of - is at most 2.52=
NO: Cost of Steiner Tree of - is at least 2.53=
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Vertex Cover to Euclidean Steiner Tree

} Facilities: Vertices −→ {� · ®41 ,� · ®42 , . . . ,� · ®4=}

} Terminals: ®0 and Edges −→ {®48 + ®4 9 : (8 , 9) ∈ �}

} For every � ∈ (0, 1) it is cheaper to connect two edges to ®0
than through a Steiner point

} To avoid this we need vertex cover to be independent set

} But this is an easy problem

All these obstacles are for DST
The obstacles for CST are way more serious!
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3-Set Packing to Euclidean DST

3-Set Packing:

} Input: Set System (*, C), C ⊆
([=]

3
)

} Objective: Maximum size subcollection of Cwhich are
pairwise disjoint

Theorem (Petrank’94)
For some � > 0, it is NP-hard to distinguish:
YES: There are =/3 pairwise disjoint subsets in the input
NO: There are at most (1 − �) · =/3 pairwise disjoint subsets in
the input
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3-Set Packing to Euclidean DST

} Terminals: Universe −→ {®41 , ®42 , . . . , ®4=}

} Facilities: Sets −→ {� · ®48 + � · ®4 9 + � · ®4: : {8 , 9 , :} ∈ C}

} We must choose � < 0.31

} For our reduction � = 1/6 is optimal

} Additional terminal: ®0

Structural Claim

Steiner points used form the maximum packing of sets
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Structural Picture
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Completeness

} =/3 pairwise disjoint sets are the Steiner points

} Terminal – Steiner point distance is
√

3
4

} ®0 – Steiner point distance is
√

1
12

} Steiner Tree cost is:

(=/3) ·
√

1
12 + = ·

√
3
4
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Soundness

Let )(- ∪ (, �) be the min cost Steiner Tree

} Claim 1: No Terminal – Terminal edge in �

} Claim 2: All terminals are leaves in )

} Claim 3: No Steiner point – Steiner point edge in �

} Claim 4: Every Steiner point is adjacent to 3 terminals and ®0

Cost of ) = (=/3)(1 − �)
√

1
12 + =(1 − �)

√
3
4 + �= · 1
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(�, �)-3-Set Packing

(�, �)-3-Set Packing:

} Input: Set System (*, C), C ⊆
([=]

3
)

} Completeness: There are =/3 pairwise disjoint subsets in C

} Soundness: There are at most (1− �)=/3 pairwise disjoint subsets
in C and every set cover must be of size at least (1 + �)=/3
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Our result on DST

Theorem (Fleischmann–Gavva–K’23)
Assuming (�, �)-3-Set Packing is NP-hard, we have that DST in
ℓ?-metric is NP-hard to approximate to (1 + �) factor, where

� :=



�/4 if ? = ∞
�
2

(
1 − 1

31/?

)
+ 2�

(
1

2·31/? − 3
8

)
if ? > 1/log3(4/3)

�/8 if ? = 1/log3(4/3) ≈ 3.8
�/26 if ? = 2
> 0 if ? ∈ (1, 2) ∪

(
2, 1

log3(4/3)

)
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Proof Sketch of inapproximability of CST in ℓ∞-metric

Theorem (Fleischmann–Gavva–K’23)
There is a poly time reduction from a graph � on = vertices to an
instance of CST in the ℓ∞-metric such that the optimal cost of the
Steiner tree is (= + "(�))/2.

} We embed each vertex as point in ℝ |� | such that:

◦ Two vertices are adjacent =⇒ distance is 2
◦ Two vertices are non-adjacent =⇒ distance is 1

} There is a Steiner point at distance 0.5 from all points in each
color class and max-norm 0.5

} All Steiner points are connected to ®0

} Cost of Tree = 0.5 · = + 0.5 · "(�)

30
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Key Takeaways

} Ruling out PTAS for Euclidean CST is still open!

} No PTAS for DST in ℓ?-metrics

} No PTAS for CST in ℓ∞-metric

} DST is at least as hard as CST

} At the heart of Steiner Tree Computation lies:
◦ 3-Set Cover
◦ 3-Set Packing
◦ =/3-Chromatic number
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THANK
YOU!
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