Steiner Tree in ℓ_{p}-metrics How hard is it to approximate?

Karthik C. S.
(Rutgers University)

Joint work with

Henry Fleischmann (University of Michigan)

Surya Teja Gavva (Rutgers University)

Wire routing in VLSI circuits

Wire routing in VLSI circuits

\bullet

Wire routing in VLSI circuits

Wire routing in VLSI circuits

Gauss

Given four points in the Euclidean plane, what is the cheapest network connecting them?

Steiner Tree in Euclidean Plane

OPEN PROBLEM

Given n points in the Euclidean plane, show that the above configuration maximizes ratio of cost of Minimum Spanning Tree to cost of Minimum Steiner Tree

Quest for Computing Steiner Tree

So little we know and yet, we will continue to explore!

Steiner Tree: Formalism

© (Γ, Δ) is a metric space

Steiner Tree: Formalism

© (Γ, Δ) is a metric space
© Steiner Tree of $X \subseteq \Gamma$ is a Tree $T(X \cup S, E)$:

Steiner Tree: Formalism

© (Γ, Δ) is a metric space
© Steiner Tree of $X \subseteq \Gamma$ is a Tree $T(X \cup S, E)$:

- $S \subseteq \Gamma$

Steiner Tree: Formalism

© (Γ, Δ) is a metric space
© Steiner Tree of $X \subseteq \Gamma$ is a Tree $T(X \cup S, E)$:

- $S \subseteq \Gamma$
- Cost of T is minimized:

$$
\operatorname{cost}(T)=\sum_{(u, v) \in E} \Delta(u, v)
$$

© (Γ, Δ) is a metric space
Terminals
© Steiner Tree of $X \subseteq \Gamma$ is a Tree $T(X \cup S, E)$:

- $S \subseteq \Gamma$
- Cost of T is minimized:

$$
\operatorname{cost}(T)=\sum_{(u, v) \in E} \Delta(u, v)
$$

Steiner Tree Computation

© (Γ, Δ) is a metric space

Steiner Tree Computation

© (Γ, Δ) is a metric space
๑ Input: $X \subseteq \Gamma$

Steiner Tree Computation

© (Γ, Δ) is a metric space
๑ Input: $X \subseteq \Gamma$
© Output: A Tree $T(X \cup S, E)$:

Steiner Tree Computation

© (Γ, Δ) is a metric space
๑ Input: $X \subseteq \Gamma$
© Output: A Tree $T(X \cup S, E)$:

- $S \subseteq \Gamma$

Steiner Tree Computation

© (Γ, Δ) is a metric space
๑ Input: $X \subseteq \Gamma$
© Output: A Tree $T(X \cup S, E)$:

- $S \subseteq \Gamma$
- Cost of T is minimized (over all possible S and E):

$$
\operatorname{cost}(T)=\sum_{(u, v) \in E} \Delta(u, v)
$$

Steiner Tree Computation

Continuous Steiner Tree

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$
© Output: A Tree $T(X \cup S, E)$:

- $S \subseteq \Gamma$
- Cost of T is minimized (over all possible S and E):

$$
\operatorname{cost}(T)=\sum_{(u, v) \in E} \Delta(u, v)
$$

Steiner Tree Computation

Discrete
 Gontinuous Steiner Tree

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$ and $\mathcal{S} \subseteq \Gamma$
© Output: A $_{S}^{\circ S \subseteq \mathbb{X}}$

- Cost of T is minimized (over all possible S and E):

$$
\operatorname{cost}(T)=\sum_{(u, v) \in E} \Delta(u, v)
$$

Steiner Tree Computation

Discrete
 Continuous Steiner Tree

© (Γ, Δ) is a metric space
© Input: $X \subseteq \Gamma$ and $\delta \subseteq \Gamma \longrightarrow$ Possible that $\delta=\Gamma$
© Output: A Tree $T(X \cup S, E)$:

- $S \subseteq \mathbb{X}$
- Cost of T is minimized (over all possible S and E):

$$
\operatorname{cost}(T)=\sum_{(u, v) \in E} \Delta(u, v)
$$

Exact Computation

© DST is NP-hard in General metrics (Karp'72)

- DST is NP-hard in ℓ_{∞}-metric

Exact Computation

© DST is NP-hard in General metrics (Karp'72)

- DST is NP-hard in ℓ_{∞}-metric
© CST is NP-hard in ℓ_{2}-metric (Garey-Graham-Johnson' 77)

Exact Computation

© DST is NP-hard in General metrics (Karp'72)

- DST is NP-hard in ℓ_{∞}-metric
© CST is NP-hard in ℓ_{2}-metric (Garey-Graham-Johnson'77)
- Even in the plane

Exact Computation

© DST is NP-hard in General metrics (Karp' 72)

- DST is NP-hard in ℓ_{∞}-metric
© CST is NP-hard in ℓ_{2}-metric (Garey-Graham-Johnson'77)
- Even in the plane
- DST is NP-hard in ℓ_{2}-metric

Exact Computation

© DST is NP-hard in General metrics (Karp'72)

- DST is NP-hard in ℓ_{∞}-metric
© CST is NP-hard in ℓ_{2}-metric (Garey-Graham-Johnson'77)
- Even in the plane
- DST is NP-hard in ℓ_{2}-metric
© CST is NP-hard in ℓ_{1}-metric (Garey-Johnson'77)
- Even in the plane
- DST is NP-hard in ℓ_{1}-metric

Exact Computation

© DST is NP-hard in General metrics (Karp'72)

- DST is NP-hard in ℓ_{∞}-metric
© CST is NP-hard in ℓ_{2}-metric (Garey-Graham-Johnson'77)
- Even in the plane
- DST is NP-hard in ℓ_{2}-metric
© CST is NP-hard in ℓ_{1}-metric (Garey-Johnson'77)
- Even in the plane
- DST is NP-hard in ℓ_{1}-metric
© CST is NP-hard in ℓ_{0}-metric (Foulds-Graham'82)
- DST is NP-hard in ℓ_{0}-metric

Approximation Algorithms

© 2-approximation for DST and CST in every metric (Gilbert-Pollak'68)

- Compute Minimum Spanning Tree of only Terminals

Approximation Algorithms

© 2-approximation for DST and CST in every metric (Gilbert-Pollak'68)

- Compute Minimum Spanning Tree of only Terminals
© 1.39-approximation for DST in General metrics (Byrka-Grandoni-Rothvoß-Sanitá'10)

Approximation Algorithms

© 2-approximation for DST and CST in every metric (Gilbert-Pollak'68)

- Compute Minimum Spanning Tree of only Terminals
© 1.39-approximation for DST in General metrics (Byrka-Grandoni-Rothvoß-Sanitá'10)
© PTAS for CST in fixed dimensional ℓ_{2} metric (Arora'96)
- PTAS for CST in fixed dimensional ℓ_{p} metrics

Hardness of Approximation

© DST in General metrics is NP-hard to approximate to 1.01 factor (Chlebík-Chlebíková'o8)

Hardness of Approximation

© DST in General metrics is NP-hard to approximate to 1.01 factor (Chlebík-Chlebíková'o8)
© DST and CST in ℓ_{0} metric are NP-hard to approximate to 1.004 factor (Day-Johnson-Sankoff'86 and Wareham'95)

Hardness of Approximation

© DST in General metrics is NP-hard to approximate to 1.01 factor (Chlebík-Chlebíková'o8)
© DST and CST in ℓ_{0} metric are NP-hard to approximate to 1.004 factor (Day-Johnson-Sankoff'86 and Wareham'95)
© DST and CST in ℓ_{1} metric are NP-hard to approximate to 1.004 factor (Trevisan'97)

Hardness of Approximation: Questions

Euclidean metric

Can we rule out PTAS for CST in high dimensional ℓ_{2}-metric? (i.e., $\Omega(\log n)$ dimensions)

Hardness of Approximation: Questions

Euclidean metric

Can we rule out PTAS for CST in high dimensional ℓ_{2}-metric? (i.e., $\Omega(\log n)$ dimensions)

Can we rule out PTAS for DST in high dimensional ℓ_{2}-metric?

Hardness of Approximation: Questions

$\underline{\ell_{p} \text {-metrics }}$

Can we rule out PTAS for CST in other high dimensional ℓ_{p}-metrics? (such as ℓ_{∞}-metric)

Hardness of Approximation: Questions

$\underline{\ell_{p} \text {-metrics }}$

Can we rule out PTAS for CST in other high dimensional ℓ_{p}-metrics? (such as ℓ_{∞}-metric)

Can we rule out PTAS for DST in other high dimensional ℓ_{p}-metrics?

Hardness of Approximation: Questions

$\underline{\text { My Project }}$

Spectrum of Computational Problems

Structure

Spectrum of Computational Problems

Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in ℓ_{p}-metrics?

Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in ℓ_{p}-metrics?

What is the right reduction for DST in ℓ_{p}-metrics?

Hardness of Approximation: Questions

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in ℓ_{p}-metrics?

What is the right reduction for DST in ℓ_{p}-metrics?

What is the connection between DST and CST in ℓ_{p}-metrics?

Our Results

Theorem (Fleischmann-Gavva-K'23)

Assuming NP $\neq \mathrm{P}$, no PTAS for DST in every ℓ_{p}-metric.

Our Results

Theorem (Fleischmann-Gavva-K'23)
Assuming NP $\neq \mathrm{P}$, no PTAS for DST in every ℓ_{p}-metric.
© Above result holds even in $O(\log n)$ dimensions

Our Results

Theorem (Fleischmann-Gavva-K'23)
 Assuming NP $\neq \mathrm{P}$, no PTAS for DST in every ℓ_{p}-metric.

© Above result holds even in $O(\log n)$ dimensions
© No PTAS for DST in Euclidean metric

- Proof gives new insights into the difficulty of proving hardness for Euclidean Steiner Tree

Our Results

Theorem (Fleischmann-Gavva-K'23)

For every metric space, and every $\varepsilon>0$, there is a $\operatorname{poly}(n, 1 / \varepsilon)$-time reduction from CST to DST, preserving the minimum Steiner tree cost to $(1+\varepsilon)$ factor.

Our Results

Theorem (Fleischmann-Gavva-K'23)

For every metric space, and every $\varepsilon>0$, there is a $\operatorname{poly}(n, 1 / \varepsilon)$-time reduction from CST to DST, preserving the minimum Steiner tree cost to $(1+\varepsilon)$ factor.
© DST is harder than CST

- Proving DST hardness is a stepping stone

Our Results

Theorem (Fleischmann-Gavva-K'23)

For every metric space, and every $\varepsilon>0$, there is a poly $(n, 1 / \varepsilon)$-time reduction from CST to DST, preserving the minimum Steiner tree cost to $(1+\varepsilon)$ factor.
© DST is harder than CST

- Proving DST hardness is a stepping stone
© Key ingredient: Steiner Tree decomposition through Terminal-Terminal edges (Bartal-Gottlieb'21)

Our Results

Theorem (Fleischmann-Gavva-K'23)
 Assuming NP $\neq \mathrm{P}$, no PTAS for CST in the ℓ_{∞}-metric.

Our Results

Theorem (Fleischmann-Gavva-K'23)

Assuming NP $\neq \mathrm{P}$, no PTAS for CST in the ℓ_{∞}-metric.

Theorem (Fleischmann-Gavva-K'23)
There is a poly time reduction from a graph G on n vertices to an instance of CST in the ℓ_{∞}-metric such that the optimal cost of the Steiner tree is $(n+\chi(G)) / 2$.

Warm up: Hamming Metric

Vertex Cover:
© Input: Graph $G(V, E)$
© Objective: Min subset of V covering E

Warm up: Hamming Metric

Vertex Cover:
© Input: Graph $G(V, E)$
© Objective: Min subset of V covering E

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

Warm up: Hamming Metric

Vertex Cover:
© Input: Graph $G(V, E)$
© Objective: Min subset of V covering E

Theorem (Chlebík-Chlebíková’06)

It is NP-hard to distinguish on 4-regular graphs:
YES: Vertex cover is of size at most $0.52 n$

Warm up: Hamming Metric

Vertex Cover:
© Input: Graph $G(V, E)$
© Objective: Min subset of V covering E

Theorem (Chlebík-Chlebíková’06)

It is NP-hard to distinguish on 4-regular graphs:
YES: Vertex cover is of size at most $0.52 n$
NO: Vertex cover is of size at least $0.53 n$

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:
YES: Vertex cover is of size at most $0.52 n$
NO: Vertex cover is of size at least $0.53 n$

Day-Johnson-Sankoff'86

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:
YES: Vertex cover is of size at most $0.52 n$
NO: Vertex cover is of size at least $0.53 n$

Day-Johnson-Sankoff'86

Theorem

Given input $X \subseteq\{0,1\}^{n}$ of CST or input $X, \mathcal{S}:=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ of DST. It is NP-hard to distinguish:

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:
YES: Vertex cover is of size at most $0.52 n$
NO: Vertex cover is of size at least $0.53 n$

Day-Johnson-Sankoff'86

Theorem

Given input $X \subseteq\{0,1\}^{n}$ of CST or input $X, \mathcal{S}:=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ of DST. It is NP-hard to distinguish:
YES: Cost of Steiner Tree of X is at most $2.52 n$

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková’06)

It is NP-hard to distinguish on 4-regular graphs:
YES: Vertex cover is of size at most $0.52 n$
NO: Vertex cover is of size at least $0.53 n$

Day-Johnson-Sankoff'86

Theorem

Given input $X \subseteq\{0,1\}^{n}$ of CST or input $X, \mathcal{S}:=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ of DST. It is NP-hard to distinguish:
YES: Cost of Steiner Tree of X is at most $2.52 n$
NO: Cost of Steiner Tree of X is at least $2.53 n$

Inapproximability of DST in Hamming metric

Inapproximability of DST in Hamming metric

Points in $\{0,1\}^{n}$

Inapproximability of DST in Hamming metric

Points in $\{0,1\}^{n}$

$\overrightarrow{0} \quad \bigcirc$

Analysis of the Reduction

© Steiner Points have to be the vertices in Vertex Cover

Analysis of the Reduction

© Steiner Points have to be the vertices in Vertex Cover

- Non-trivial in case of CST

Analysis of the Reduction

© Steiner Points have to be the vertices in Vertex Cover

- Non-trivial in case of CST
© Completeness: Steiner Tree costs $0.52 n+2 n$
© Soundness: Steiner Tree costs $0.53 n+2 n$

Analysis of the Reduction

© Steiner Points have to be the vertices in Vertex Cover

- Non-trivial in case of CST
© Completeness: Steiner Tree costs $0.52 n+2 n$
© Soundness: Steiner Tree costs $0.53 n+2 n$

Theorem

Given input $X \subseteq\{0,1\}^{n}$ of CST or input $X, \mathcal{S}:=\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ of DST. It is NP-hard to distinguish:
YES: Cost of Steiner Tree of X is at most $2.52 n$
NO: Cost of Steiner Tree of X is at least $2.53 n$

Vertex Cover to Euclidean Steiner Tree

© Facilities: Vertices $\longrightarrow\left\{\lambda \cdot \vec{e}_{1}, \lambda \cdot \vec{e}_{2}, \ldots, \lambda \cdot \vec{e}_{n}\right\}$
© Terminals: $\overrightarrow{0}$ and Edges $\longrightarrow\left\{\vec{e}_{i}+\vec{e}_{j}:(i, j) \in E\right\}$

Vertex Cover to Euclidean Steiner Tree

© Facilities: Vertices $\longrightarrow\left\{\lambda \cdot \vec{e}_{1}, \lambda \cdot \vec{e}_{2}, \ldots, \lambda \cdot \vec{e}_{n}\right\}$
© Terminals: $\overrightarrow{0}$ and Edges $\longrightarrow\left\{\vec{e}_{i}+\vec{e}_{j}:(i, j) \in E\right\}$
© For every $\lambda \in(0,1)$ it is cheaper to connect two edges to $\overrightarrow{0}$ than through a Steiner point

Vertex Cover to Euclidean Steiner Tree

© Facilities: Vertices $\longrightarrow\left\{\lambda \cdot \vec{e}_{1}, \lambda \cdot \vec{e}_{2}, \ldots, \lambda \cdot \vec{e}_{n}\right\}$
© Terminals: $\overrightarrow{0}$ and Edges $\longrightarrow\left\{\vec{e}_{i}+\vec{e}_{j}:(i, j) \in E\right\}$
© For every $\lambda \in(0,1)$ it is cheaper to connect two edges to $\overrightarrow{0}$ than through a Steiner point
© To avoid this we need vertex cover to be independent set

Vertex Cover to Euclidean Steiner Tree

© Facilities: Vertices $\longrightarrow\left\{\lambda \cdot \vec{e}_{1}, \lambda \cdot \vec{e}_{2}, \ldots, \lambda \cdot \vec{e}_{n}\right\}$
© Terminals: $\overrightarrow{0}$ and Edges $\longrightarrow\left\{\vec{e}_{i}+\vec{e}_{j}:(i, j) \in E\right\}$
© For every $\lambda \in(0,1)$ it is cheaper to connect two edges to $\overrightarrow{0}$ than through a Steiner point
© To avoid this we need vertex cover to be independent set
© But this is an easy problem

Vertex Cover to Euclidean Steiner Tree

© Facilities: Vertices $\longrightarrow\left\{\lambda \cdot \vec{e}_{1}, \lambda \cdot \vec{e}_{2}, \ldots, \lambda \cdot \vec{e}_{n}\right\}$
© Terminals: $\overrightarrow{0}$ and Edges $\longrightarrow\left\{\vec{e}_{i}+\vec{e}_{j}:(i, j) \in E\right\}$
© For every $\lambda \in(0,1)$ it is cheaper to connect two edges to $\overrightarrow{0}$ than through a Steiner point
© To avoid this we need vertex cover to be independent set
© But this is an easy problem

All these obstacles are for DST
The obstacles for CST are way more serious!

3-Set Packing to Euclidean DST

3-Set Packing:
© Input: Set System $(U, \mathscr{C}), \mathscr{C} \subseteq\binom{[n]}{3}$
© Objective: Maximum size subcollection of \mathscr{C} which are pairwise disjoint

3-Set Packing to Euclidean DST

3-Set Packing:
© Input: Set System $(U, \mathscr{C}), \mathscr{C} \subseteq\binom{[n]}{3}$
© Objective: Maximum size subcollection of \mathscr{C} which are pairwise disjoint

Theorem (Petrank'94)

For some $\varepsilon>0$, it is NP-hard to distinguish:
YES: There are $n / 3$ pairwise disjoint subsets in the input
NO: There are at most $(1-\varepsilon) \cdot n / 3$ pairwise disjoint subsets in the input

3-Set Packing to Euclidean DST

© Terminals: Universe $\longrightarrow\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$
© Facilities: Sets $\longrightarrow\left\{\lambda \cdot \vec{e}_{i}+\lambda \cdot \vec{e}_{j}+\lambda \cdot \vec{e}_{k}:\{i, j, k\} \in \mathscr{C}\right\}$

3-Set Packing to Euclidean DST

© Terminals: Universe $\longrightarrow\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$
© Facilities: Sets $\longrightarrow\left\{\lambda \cdot \vec{e}_{i}+\lambda \cdot \vec{e}_{j}+\lambda \cdot \vec{e}_{k}:\{i, j, k\} \in \mathscr{C}\right\}$
© We must choose $\lambda<0.31$
© For our reduction $\lambda=1 / 6$ is optimal

3-Set Packing to Euclidean DST

© Terminals: Universe $\longrightarrow\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$
© Facilities: Sets $\longrightarrow\left\{\lambda \cdot \vec{e}_{i}+\lambda \cdot \vec{e}_{j}+\lambda \cdot \vec{e}_{k}:\{i, j, k\} \in \mathscr{C}\right\}$
© We must choose $\lambda<0.31$
© For our reduction $\lambda=1 / 6$ is optimal
© Additional terminal: $\overrightarrow{0}$
© Terminals: Universe $\longrightarrow\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$
© Facilities: Sets $\longrightarrow\left\{\lambda \cdot \vec{e}_{i}+\lambda \cdot \vec{e}_{j}+\lambda \cdot \vec{e}_{k}:\{i, j, k\} \in \mathscr{C}\right\}$
© We must choose $\lambda<0.31$
© For our reduction $\lambda=1 / 6$ is optimal
© Additional terminal: $\overrightarrow{0}$

Structural Claim

Steiner points used form the maximum packing of sets

Structural Picture

Completeness

© $n / 3$ pairwise disjoint sets are the Steiner points

Completeness

© $n / 3$ pairwise disjoint sets are the Steiner points
© Terminal - Steiner point distance is $\sqrt{\frac{3}{4}}$

Completeness

© $n / 3$ pairwise disjoint sets are the Steiner points
© Terminal - Steiner point distance is $\sqrt{\frac{3}{4}}$
© $\overrightarrow{0}$ - Steiner point distance is $\sqrt{\frac{1}{12}}$

Completeness

© $n / 3$ pairwise disjoint sets are the Steiner points
© Terminal - Steiner point distance is $\sqrt{\frac{3}{4}}$
© $\overrightarrow{0}$ - Steiner point distance is $\sqrt{\frac{1}{12}}$
© Steiner Tree cost is:

$$
(n / 3) \cdot \sqrt{\frac{1}{12}}+n \cdot \sqrt{\frac{3}{4}}
$$

Soundness

Let $T(X \cup S, E)$ be the min cost Steiner Tree

Soundness

Let $T(X \cup S, E)$ be the min cost Steiner Tree
© Claim 1: No Terminal - Terminal edge in E

Soundness

Let $T(X \cup S, E)$ be the min cost Steiner Tree
© Claim 1: No Terminal - Terminal edge in E
© Claim 2: All terminals are leaves in T

Soundness

Let $T(X \cup S, E)$ be the min cost Steiner Tree
© Claim 1: No Terminal - Terminal edge in E
© Claim 2: All terminals are leaves in T
© Claim 3: No Steiner point - Steiner point edge in E

Soundness

Let $T(X \cup S, E)$ be the min cost Steiner Tree
© Claim 1: No Terminal - Terminal edge in E
© Claim 2: All terminals are leaves in T
© Claim 3: No Steiner point - Steiner point edge in E
© Claim 4: Every Steiner point is adjacent to 3 terminals and $\overrightarrow{0}$

Soundness

Let $T(X \cup S, E)$ be the min cost Steiner Tree
© Claim 1: No Terminal - Terminal edge in E
© Claim 2: All terminals are leaves in T
© Claim 3: No Steiner point - Steiner point edge in E
© Claim 4: Every Steiner point is adjacent to 3 terminals and $\overrightarrow{0}$

$$
\text { Cost of } T=(n / 3)(1-\varepsilon) \sqrt{\frac{1}{12}}+n(1-\varepsilon) \sqrt{\frac{3}{4}}+\varepsilon n \cdot 1
$$

(ε, δ)-3-Set Packing

(ε, δ)-3-Set Packing:
© Input: Set System $(U, \mathscr{C}), \mathscr{C} \subseteq\binom{[n]}{3}$
© Completeness: There are $n / 3$ pairwise disjoint subsets in \mathscr{C}
© Soundness: There are at most $(1-\varepsilon) n / 3$ pairwise disjoint subsets in \mathscr{C} and every set cover must be of size at least $(1+\delta) n / 3$

Our result on DST

Theorem (Fleischmann-Gavva-K'23)

Assuming $(\varepsilon, \delta)-3$-Set Packing is NP-hard, we have that DST in ℓ_{p}-metric is NP-hard to approximate to $(1+\gamma)$ factor, where

$$
\gamma:= \begin{cases}\delta / 4 & \text { if } p=\infty \\ \frac{\varepsilon}{2}\left(1-\frac{1}{3^{1 / p}}\right)+2 \delta\left(\frac{1}{2 \cdot 3^{1 / p}}-\frac{3}{8}\right) & \text { if } p>1 / \log _{3}(4 / 3) \\ \varepsilon / 8 & \text { if } p=1 / \log _{3}(4 / 3) \approx 3.8 \\ \varepsilon / 26 & \text { if } p=2 \\ >0 & \text { if } p \in(1,2) \cup\left(2, \frac{1}{\log _{3}(4 / 3)}\right)\end{cases}
$$

Proof Sketch of inapproximability of CST in ℓ_{∞}-metric

Theorem (Fleischmann-Gavva-K'23)

There is a poly time reduction from a graph G on n vertices to an instance of CST in the ℓ_{∞}-metric such that the optimal cost of the Steiner tree is $(n+\chi(G)) / 2$.

Proof Sketch of inapproximability of CST in ℓ_{∞}-metric

Theorem (Fleischmann-Gavva-K'23)

There is a poly time reduction from a graph G on n vertices to an instance of CST in the ℓ_{∞}-metric such that the optimal cost of the Steiner tree is $(n+\chi(G)) / 2$.
© We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:

Proof Sketch of inapproximability of CST in ℓ_{∞}-metric

Theorem (Fleischmann-Gavva-K'23)

There is a poly time reduction from a graph G on n vertices to an instance of CST in the ℓ_{∞}-metric such that the optimal cost of the Steiner tree is $(n+\chi(G)) / 2$.
© We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:

- Two vertices are adjacent \Longrightarrow distance is 2
- Two vertices are non-adjacent \Longrightarrow distance is 1

Proof Sketch of inapproximability of CST in ℓ_{∞}-metric

Theorem (Fleischmann-Gavva-K'23)

There is a poly time reduction from a graph G on n vertices to an instance of CST in the ℓ_{∞}-metric such that the optimal cost of the Steiner tree is $(n+\chi(G)) / 2$.
© We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:

- Two vertices are adjacent \Longrightarrow distance is 2
- Two vertices are non-adjacent \Longrightarrow distance is 1
© There is a Steiner point at distance 0.5 from all points in each color class and max-norm 0.5

Proof Sketch of inapproximability of CST in ℓ_{∞}-metric

Theorem (Fleischmann-Gavva-K'23)

There is a poly time reduction from a graph G on n vertices to an instance of CST in the ℓ_{∞}-metric such that the optimal cost of the Steiner tree is $(n+\chi(G)) / 2$.
© We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:

- Two vertices are adjacent \Longrightarrow distance is 2
- Two vertices are non-adjacent \Longrightarrow distance is 1
© There is a Steiner point at distance 0.5 from all points in each color class and max-norm 0.5
© All Steiner points are connected to $\overrightarrow{0}$

Proof Sketch of inapproximability of CST in ℓ_{∞}-metric

Theorem (Fleischmann-Gavva-K'23)

There is a poly time reduction from a graph G on n vertices to an instance of CST in the ℓ_{∞}-metric such that the optimal cost of the Steiner tree is $(n+\chi(G)) / 2$.
© We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:

- Two vertices are adjacent \Longrightarrow distance is 2
- Two vertices are non-adjacent \Longrightarrow distance is 1
© There is a Steiner point at distance 0.5 from all points in each color class and max-norm 0.5
© All Steiner points are connected to $\overrightarrow{0}$
© Cost of Tree $=0.5 \cdot n+0.5 \cdot \chi(G)$

Key Takeaways

© Ruling out PTAS for Euclidean CST is still open!

Key Takeaways

© Ruling out PTAS for Euclidean CST is still open!
© No PTAS for DST in ℓ_{p}-metrics

Key Takeaways

© Ruling out PTAS for Euclidean CST is still open!
© No PTAS for DST in ℓ_{p}-metrics
© No PTAS for CST in ℓ_{∞}-metric

Key Takeaways

© Ruling out PTAS for Euclidean CST is still open!
© No PTAS for DST in ℓ_{p}-metrics
© No PTAS for CST in ℓ_{∞}-metric
© DST is at least as hard as CST

Key Takeaways

© Ruling out PTAS for Euclidean CST is still open!
© No PTAS for DST in ℓ_{p}-metrics
© No PTAS for CST in ℓ_{∞}-metric
© DST is at least as hard as CST
© At the heart of Steiner Tree Computation lies:

- 3-Set Cover
- 3-Set Packing
- n/3-Chromatic number

THANK
 YOU!

