Steiner Tree in ℓ_p -metrics How hard is it to approximate?

Karthik C. S. (Rutgers University)

Joint work with

Henry Fleischmann (University of Michigan)

Surya Teja Gavva (Rutgers University)

					•	•						
 •••••	•	 •				• • •	•					

with Site fign di Martes - c - 1 d Sum I gift - R find with

Given four points in the Euclidean plane, what is the cheapest network connecting them?

OPEN PROBLEM

Given *n* points in the Euclidean plane, show that the above configuration maximizes ratio of cost of Minimum Spanning Tree to cost of Minimum Steiner Tree

Quest for Computing Steiner Tree

So little we know and yet, we will continue to explore!

 \odot (Γ , Δ) is a metric space

- \odot (Γ , Δ) is a metric space

- \odot (Γ , Δ) is a metric space

 $\circ \ S \subseteq \Gamma$

- \odot (Γ , Δ) is a metric space

 $\circ \ S \subseteq \Gamma$

• Cost of *T* is minimized:

$$cost(T) = \sum_{(u,v)\in E} \Delta(u,v)$$

• Cost of *T* is minimized:

$$cost(T) = \sum_{(u,v)\in E} \Delta(u,v)$$

 \odot (Γ , Δ) is a metric space

- \odot (Γ , Δ) is a metric space

- \odot (Γ , Δ) is a metric space
- \odot Input: $X \subseteq \Gamma$
- ◎ Output: A Tree $T(X \cup S, E)$:

- \odot (Γ , Δ) is a metric space
- $in ext{Input: } X ⊆ Γ$
- ◎ Output: A Tree $T(X \cup S, E)$:

• $S \subseteq \Gamma$

- \odot (Γ , Δ) is a metric space
- \odot Input: $X \subseteq \Gamma$
- ◎ Output: A Tree $T(X \cup S, E)$:

 $\circ \ S \subseteq \Gamma$

• Cost of *T* is minimized (over all possible *S* and *E*):

$$cost(T) = \sum_{(u,v)\in E} \Delta(u,v)$$

Continuous Steiner Tree

- \odot (Γ , Δ) is a metric space
- \odot Input: $X \subseteq \Gamma$
- ◎ Output: A Tree $T(X \cup S, E)$:

 $\circ \ S \subseteq \Gamma$

• Cost of *T* is minimized (over all possible *S* and *E*):

$$cost(T) = \sum_{(u,v)\in E} \Delta(u,v)$$

Discrete Continuous Steiner Tree

- \odot (Γ , Δ) is a metric space
- - Cost of *T* is minimized (over all possible *S* and *E*):

$$cost(T) = \sum_{(u,v)\in E} \Delta(u,v)$$

Discrete Continuous Steiner Tree

- \odot (Γ , Δ) is a metric space

• Cost of *T* is minimized (over all possible *S* and *E*):

$$cost(T) = \sum_{(u,v)\in E} \Delta(u,v)$$

• DST is NP-hard in General metrics (Karp'72)

• DST is NP-hard in ℓ_{∞} -metric

◎ DST is NP-hard in General metrics (Karp'72)
 ∘ DST is NP-hard in ℓ_∞-metric

◎ CST is NP-hard in *l*₂-metric (Garey-Graham-Johnson'77)

◎ DST is NP-hard in General metrics (Karp'72)

• DST is NP-hard in ℓ_{∞} -metric

 \odot CST is NP-hard in ℓ_2 -metric (Garey-Graham-Johnson'77)

• Even in the plane

◎ DST is NP-hard in General metrics (Karp'72)

• DST is NP-hard in ℓ_{∞} -metric

◎ CST is NP-hard in *l*₂-metric (Garey-Graham-Johnson'77)

• Even in the plane

• DST is NP-hard in ℓ_2 -metric

◎ DST is NP-hard in General metrics (Karp'72)

• DST is NP-hard in ℓ_{∞} -metric

- ◎ CST is NP-hard in *ℓ*₂-metric (Garey-Graham-Johnson'77)
 - Even in the plane
 - DST is NP-hard in ℓ_2 -metric
- ◎ CST is NP-hard in l_1 -metric (Garey-Johnson'77)
 - Even in the plane
 - DST is NP-hard in l_1 -metric

◎ DST is NP-hard in General metrics (Karp'72)

- DST is NP-hard in ℓ_{∞} -metric
- \odot CST is NP-hard in ℓ_2 -metric (Garey-Graham-Johnson'77)
 - Even in the plane
 - DST is NP-hard in ℓ_2 -metric
- ◎ CST is NP-hard in l_1 -metric (Garey-Johnson'77)
 - Even in the plane
 - DST is NP-hard in l_1 -metric
- \odot CST is NP-hard in ℓ_0 -metric (Foulds-Graham'82)
 - DST is NP-hard in l_0 -metric

- 2-approximation for DST and CST in every metric (Gilbert-Pollak'68)
 - Compute Minimum Spanning Tree of only Terminals

Approximation Algorithms

 2-approximation for DST and CST in every metric (Gilbert-Pollak'68)

• Compute Minimum Spanning Tree of only Terminals

 1.39-approximation for DST in General metrics (Byrka-Grandoni-Rothvoß-Sanitá'10) 2-approximation for DST and CST in every metric (Gilbert-Pollak'68)

• Compute Minimum Spanning Tree of only Terminals

- 1.39-approximation for DST in General metrics (Byrka-Grandoni-Rothvoß-Sanitá'10)
- PTAS for CST in fixed dimensional l₂ metric (Arora'96)
 PTAS for CST in fixed dimensional l_p metrics

 DST in General metrics is NP-hard to approximate to 1.01 factor (Chlebík-Chlebíková'o8)

- DST in General metrics is NP-hard to approximate to 1.01 factor (Chlebík-Chlebíková'08)
- DST and CST in l₀ metric are NP-hard to approximate to 1.004 factor (Day-Johnson-Sankoff'86 and Wareham'95)

- DST in General metrics is NP-hard to approximate to 1.01 factor (Chlebík-Chlebíková'08)
- DST and CST in l₀ metric are NP-hard to approximate to 1.004 factor (Day-Johnson-Sankoff'86 and Wareham'95)
- DST and CST in l₁ metric are NP-hard to approximate to 1.004 factor (Trevisan'97)

Euclidean metric

Can we rule out PTAS for CST in high dimensional ℓ_2 -metric? (i.e., $\Omega(\log n)$ dimensions)

Euclidean metric

Can we rule out PTAS for CST in high dimensional ℓ_2 -metric? (i.e., $\Omega(\log n)$ dimensions)

Can we rule out PTAS for DST in high dimensional l_2 -metric?

 ℓ_p -metrics

Can we rule out PTAS for CST in other high dimensional ℓ_p -metrics? (such as ℓ_{∞} -metric)

 ℓ_p -metrics

Can we rule out PTAS for CST in other high dimensional ℓ_p -metrics? (such as ℓ_{∞} -metric)

Can we rule out PTAS for DST in other high dimensional ℓ_p -metrics?

My Project

Circuit-SAT CSP Set Cover Max Coverage

Structure

Label Cover

Circuit-SAT CSP	Set Cover Max Coverage		Max Cut Independent Set Clique Vertex Cover	
	JC S	R tructure		
UEC				
Label (Cover	3-SAT 3-LIN	Clustering Steiner Tree TSP	13

My Project

What is the right reduction for DST in General metrics?

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in ℓ_p -metrics?

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in l_p -metrics?

What is the right reduction for DST in ℓ_p -metrics?

My Project

What is the right reduction for DST in General metrics?

What is the right reduction for CST in l_p -metrics?

What is the right reduction for DST in ℓ_p -metrics?

What is the connection between DST and CST in ℓ_p -metrics?

Assuming NP \neq P, no PTAS for DST in every ℓ_p -metric.

Assuming NP \neq P, no PTAS for DST in every ℓ_p -metric.

 \odot Above result holds even in $O(\log n)$ dimensions

Assuming NP \neq P, no PTAS for DST in every ℓ_p -metric.

- Above result holds even in $O(\log n)$ dimensions
- ◎ No PTAS for DST in Euclidean metric
 - Proof gives new insights into the difficulty of proving hardness for Euclidean Steiner Tree

For every metric space, and every $\varepsilon > 0$, there is a poly $(n, 1/\varepsilon)$ -time reduction from CST to DST, preserving the minimum Steiner tree cost to $(1 + \varepsilon)$ factor.

For every metric space, and every $\varepsilon > 0$, there is a poly $(n, 1/\varepsilon)$ -time reduction from CST to DST, preserving the minimum Steiner tree cost to $(1 + \varepsilon)$ factor.

OST is harder than CST

• Proving DST hardness is a stepping stone

For every metric space, and every $\varepsilon > 0$, there is a poly $(n, 1/\varepsilon)$ -time reduction from CST to DST, preserving the minimum Steiner tree cost to $(1 + \varepsilon)$ factor.

- OST is harder than CST
 - Proving DST hardness is a stepping stone
- Key ingredient: Steiner Tree decomposition through Terminal-Terminal edges (Bartal-Gottlieb'21)

Assuming NP \neq P, no PTAS for CST in the ℓ_{∞} -metric.

Assuming NP \neq P, no PTAS for CST in the ℓ_{∞} -metric.

Theorem (Fleischmann-Gavva-K'23)

There is a poly time reduction from a graph *G* on *n* vertices to an instance of CST in the ℓ_{∞} -metric such that the optimal cost of the Steiner tree is $(n + \chi(G))/2$.

- \odot Input: Graph G(V, E)
- Objective: Min subset of *V* covering *E*

- \odot Input: Graph G(V, E)
- ◎ Objective: Min subset of *V* covering *E*

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

- ◎ Input: Graph G(V, E)
- ◎ Objective: Min subset of *V* covering *E*

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

YES: Vertex cover is of size at most 0.52*n*

- ◎ Input: Graph G(V, E)
- ◎ Objective: Min subset of *V* covering *E*

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

YES: Vertex cover is of size at most 0.52*n*

NO: Vertex cover is of size at least 0.53n

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

YES: Vertex cover is of size at most 0.52*n*

NO: Vertex cover is of size at least 0.53n

Day-Johnson-Sankoff'86

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

YES: Vertex cover is of size at most 0.52*n*

NO: Vertex cover is of size at least 0.53n

Theorem

Given input $X \subseteq \{0, 1\}^n$ of CST or input $X, \mathcal{S} := \{\vec{e}_1, \dots, \vec{e}_n\}$ of DST. It is NP-hard to distinguish:

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

YES: Vertex cover is of size at most 0.52*n*

NO: Vertex cover is of size at least 0.53n

Theorem

Given input $X \subseteq \{0, 1\}^n$ of CST or input $X, \mathcal{S} := \{\vec{e}_1, \dots, \vec{e}_n\}$ of DST. It is NP-hard to distinguish:

YES: Cost of Steiner Tree of *X* is at most 2.52*n*

Warm up: Hamming Metric

Theorem (Chlebík-Chlebíková'06)

It is NP-hard to distinguish on 4-regular graphs:

YES: Vertex cover is of size at most 0.52*n*

NO: Vertex cover is of size at least 0.53n

Theorem

Given input $X \subseteq \{0, 1\}^n$ of CST or input $X, \mathcal{S} := \{\vec{e}_1, \dots, \vec{e}_n\}$ of DST. It is NP-hard to distinguish:

YES: Cost of Steiner Tree of *X* is at most 2.52*n*

NO: Cost of Steiner Tree of *X* is at least 2.53*n*

Inapproximability of DST in Hamming metric

Inapproximability of DST in Hamming metric

Inapproximability of DST in Hamming metric

 $\vec{0}$ \bigcirc

Steiner Points have to be the vertices in Vertex Cover

Steiner Points have to be the vertices in Vertex Cover

• Non-trivial in case of CST

- Steiner Points have to be the vertices in Vertex Cover
 Non-trivial in case of CST
- \odot Completeness: Steiner Tree costs 0.52n + 2n
- Soundness: Steiner Tree costs 0.53n + 2n

- Steiner Points have to be the vertices in Vertex Cover
 Non-trivial in case of CST
- \odot Completeness: Steiner Tree costs 0.52n + 2n
- Soundness: Steiner Tree costs 0.53n + 2n

Theorem

Given input $X \subseteq \{0, 1\}^n$ of CST or input $X, \mathcal{S} := \{\vec{e}_1, \dots, \vec{e}_n\}$ of DST. It is NP-hard to distinguish:

YES: Cost of Steiner Tree of *X* is at most 2.52*n*

NO: Cost of Steiner Tree of *X* is at least 2.53*n*

 \odot Facilities: Vertices $\longrightarrow \{\lambda \cdot \vec{e}_1, \lambda \cdot \vec{e}_2, \dots, \lambda \cdot \vec{e}_n\}$

◎ Terminals: $\vec{0}$ and Edges $\longrightarrow {\vec{e}_i + \vec{e}_j : (i, j) \in E}$

- ◎ Facilities: Vertices $\longrightarrow \{\lambda \cdot \vec{e}_1, \lambda \cdot \vec{e}_2, \dots, \lambda \cdot \vec{e}_n\}$
- ◎ Terminals: $\vec{0}$ and Edges $\longrightarrow \{\vec{e}_i + \vec{e}_j : (i, j) \in E\}$
- ◎ For every $\lambda \in (0, 1)$ it is cheaper to connect two edges to $\vec{0}$ than through a Steiner point

- ◎ Facilities: Vertices $\longrightarrow \{\lambda \cdot \vec{e}_1, \lambda \cdot \vec{e}_2, \dots, \lambda \cdot \vec{e}_n\}$
- ◎ Terminals: $\vec{0}$ and Edges $\longrightarrow \{\vec{e}_i + \vec{e}_j : (i, j) \in E\}$
- ◎ For every $\lambda \in (0, 1)$ it is cheaper to connect two edges to $\vec{0}$ than through a Steiner point
- To avoid this we need vertex cover to be independent set

- ◎ Facilities: Vertices $\longrightarrow \{\lambda \cdot \vec{e}_1, \lambda \cdot \vec{e}_2, \dots, \lambda \cdot \vec{e}_n\}$
- ◎ Terminals: $\vec{0}$ and Edges $\longrightarrow \{\vec{e}_i + \vec{e}_j : (i, j) \in E\}$
- For every λ ∈ (0, 1) it is cheaper to connect two edges to 0
 than through a Steiner point
- To avoid this we need vertex cover to be independent set
- But this is an easy problem

- ◎ Facilities: Vertices $\longrightarrow \{\lambda \cdot \vec{e}_1, \lambda \cdot \vec{e}_2, \dots, \lambda \cdot \vec{e}_n\}$
- ◎ Terminals: $\vec{0}$ and Edges $\longrightarrow \{\vec{e}_i + \vec{e}_j : (i, j) \in E\}$
- ◎ For every $\lambda \in (0, 1)$ it is cheaper to connect two edges to $\vec{0}$ than through a Steiner point
- To avoid this we need vertex cover to be independent set
- But this is an easy problem

All these obstacles are for DST The obstacles for CST are way more serious! 3-Set Packing:

- ◎ Input: Set System $(U, \mathscr{C}), \mathscr{C} \subseteq {[n] \choose 3}$
- Objective: Maximum size subcollection of C which are pairwise disjoint

3-Set Packing:

- ◎ Input: Set System $(U, \mathscr{C}), \mathscr{C} \subseteq {\binom{[n]}{3}}$
- Objective: Maximum size subcollection of C which are pairwise disjoint

Theorem (Petrank'94)

For some $\varepsilon > 0$, it is NP-hard to distinguish:

YES: There are n/3 pairwise disjoint subsets in the input

NO: There are at most $(1 - \varepsilon) \cdot n/3$ pairwise disjoint subsets in the input

- \odot Terminals: Universe $\longrightarrow \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$
- ◎ Facilities: Sets $\longrightarrow \{\lambda \cdot \vec{e}_i + \lambda \cdot \vec{e}_j + \lambda \cdot \vec{e}_k : \{i, j, k\} \in \mathscr{C}\}$

- \odot Terminals: Universe $\longrightarrow \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$
- ◎ Facilities: Sets $\longrightarrow \{\lambda \cdot \vec{e}_i + \lambda \cdot \vec{e}_j + \lambda \cdot \vec{e}_k : \{i, j, k\} \in \mathscr{C}\}$
- We must choose $\lambda < 0.31$
- ◎ For our reduction $\lambda = 1/6$ is optimal

- \odot Terminals: Universe $\longrightarrow \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$
- ◎ Facilities: Sets $\longrightarrow \{\lambda \cdot \vec{e}_i + \lambda \cdot \vec{e}_j + \lambda \cdot \vec{e}_k : \{i, j, k\} \in \mathscr{C}\}$
- We must choose $\lambda < 0.31$
- For our reduction $\lambda = 1/6$ is optimal
- \odot Additional terminal: $\vec{0}$

- \odot Terminals: Universe $\longrightarrow \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$
- ◎ Facilities: Sets $\longrightarrow \{\lambda \cdot \vec{e}_i + \lambda \cdot \vec{e}_j + \lambda \cdot \vec{e}_k : \{i, j, k\} \in \mathscr{C}\}$
- We must choose $\lambda < 0.31$
- For our reduction $\lambda = 1/6$ is optimal
- Additional terminal: $\vec{0}$

Structural Claim

Steiner points used form the maximum packing of sets

Structural Picture

25

\odot *n*/3 pairwise disjoint sets are the Steiner points

◎ *n*/3 pairwise disjoint sets are the Steiner points
 ◎ Terminal – Steiner point distance is √³/₄

- \odot *n*/3 pairwise disjoint sets are the Steiner points
- Terminal Steiner point distance is $\sqrt{\frac{3}{4}}$
- \odot $\vec{0}$ Steiner point distance is $\sqrt{\frac{1}{12}}$

- \odot *n*/3 pairwise disjoint sets are the Steiner points
- Terminal Steiner point distance is $\sqrt{\frac{3}{4}}$
- \odot $\vec{0}$ Steiner point distance is $\sqrt{\frac{1}{12}}$
- Steiner Tree cost is:

$$(n/3)\cdot\sqrt{\frac{1}{12}}+n\cdot\sqrt{\frac{3}{4}}$$

◎ <u>Claim 1</u>: No Terminal – Terminal edge in *E*

- ◎ <u>Claim 1</u>: No Terminal Terminal edge in *E*
- \odot <u>Claim 2</u>: All terminals are leaves in *T*

- ◎ <u>Claim 1</u>: No Terminal Terminal edge in *E*
- \odot <u>Claim 2</u>: All terminals are leaves in *T*
- ◎ Claim 3: No Steiner point Steiner point edge in E

- ◎ <u>Claim 1</u>: No Terminal Terminal edge in E
- \odot <u>Claim 2</u>: All terminals are leaves in *T*
- ◎ Claim 3: No Steiner point Steiner point edge in E
- \odot Claim 4: Every Steiner point is adjacent to 3 terminals and $\vec{0}$

- ◎ <u>Claim 1</u>: No Terminal Terminal edge in E
- ◎ <u>Claim 2</u>: All terminals are leaves in *T*
- ◎ Claim 3: No Steiner point Steiner point edge in E
- \odot Claim 4: Every Steiner point is adjacent to 3 terminals and $\vec{0}$

Cost of
$$T = (n/3)(1-\varepsilon)\sqrt{\frac{1}{12}} + n(1-\varepsilon)\sqrt{\frac{3}{4}} + \varepsilon n \cdot 1$$

 (ε, δ) -3-Set Packing:

- ◎ Input: Set System $(U, \mathscr{C}), \mathscr{C} \subseteq {\binom{[n]}{3}}$
- ◎ Completeness: There are n/3 pairwise disjoint subsets in %
- Soundness: There are at most $(1 \varepsilon)n/3$ pairwise disjoint subsets in \mathcal{C} and every set cover must be of size at least $(1 + \delta)n/3$

Assuming (ε, δ) -3-Set Packing is NP-hard, we have that DST in ℓ_p -metric is NP-hard to approximate to $(1 + \gamma)$ factor, where

$$\gamma := \begin{cases} \delta/4 & \text{if } p = \infty \\ \frac{\varepsilon}{2} \left(1 - \frac{1}{3^{1/p}} \right) + 2\delta \left(\frac{1}{2 \cdot 3^{1/p}} - \frac{3}{8} \right) & \text{if } p > 1/\log_3(4/3) \\ \varepsilon/8 & \text{if } p = 1/\log_3(4/3) \approx 3.8 \\ \varepsilon/26 & \text{if } p = 2 \\ > 0 & \text{if } p \in (1, 2) \cup \left(2, \frac{1}{\log_3(4/3)} \right) \end{cases}$$

There is a poly time reduction from a graph *G* on *n* vertices to an instance of CST in the ℓ_{∞} -metric such that the optimal cost of the Steiner tree is $(n + \chi(G))/2$.

• We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:

- We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:
 - Two vertices are adjacent \implies distance is 2
 - Two vertices are non-adjacent \implies distance is 1

- We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:
 - Two vertices are adjacent \implies distance is 2
 - Two vertices are non-adjacent \implies distance is 1
- There is a Steiner point at distance 0.5 from all points in each color class and max-norm 0.5

- We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:
 - Two vertices are adjacent \implies distance is 2
 - Two vertices are non-adjacent \implies distance is 1
- There is a Steiner point at distance 0.5 from all points in each color class and max-norm 0.5
- All Steiner points are connected to $\vec{0}$

- We embed each vertex as point in $\mathbb{R}^{|E|}$ such that:
 - Two vertices are adjacent \implies distance is 2
 - Two vertices are non-adjacent \implies distance is 1
- There is a Steiner point at distance 0.5 from all points in each color class and max-norm 0.5
- \odot All Steiner points are connected to $\vec{0}$
- Cost of Tree = $0.5 \cdot n + 0.5 \cdot \chi(G)$

Ruling out PTAS for Euclidean CST is still open!

Ruling out PTAS for Euclidean CST is still open!

• No PTAS for DST in ℓ_p -metrics

- Ruling out PTAS for Euclidean CST is still open!
- No PTAS for DST in ℓ_p -metrics
- ◎ No PTAS for CST in l_{∞} -metric

- Ruling out PTAS for Euclidean CST is still open!
- No PTAS for DST in ℓ_p -metrics
- ◎ No PTAS for CST in l_{∞} -metric
- OST is at least as hard as CST

- Ruling out PTAS for Euclidean CST is still open!
- ◎ No PTAS for DST in l_p -metrics
- ◎ No PTAS for CST in l_{∞} -metric
- OST is at least as hard as CST
- ◎ At the heart of Steiner Tree Computation lies:
 - 3-Set Cover
 - 3-Set Packing
 - *n*/3-Chromatic number

THANK YOU!