Hardness of Approximation meets Parameterized Complexity

Karthik C. S.

New York University

December 27, 2020
Day 1: The Setting

Day 2: Gap Creation

Day 3: Applications
Part 1: Hardness of Approximating MaxCover
- Recap
- MaxCover with Projection Property
- Gap Creation
Part 1: Hardness of Approximating MaxCover
- Recap
- MaxCover with Projection Property
- Gap Creation

Part 2: Hardness of Approximating One-Sided Biclique
- Recap
- Gap Creation
Part 1

Gap Creation in MaxCover
MaxCover: Recap

\[\Gamma(U, W, E) \]

- Each \(W_i \) is a Right Super Node
- Each \(U_i \) is a Left Super Node

A labeling \(S \subseteq W \) of \(W \) covers \(U_i \) if

\[\forall i \in [k], |S \cap W_i| = 1 \]

\(S \) covers \(U_i \) if

\[\exists u \in U_i, \forall v \in S, (u, v) \in E \]

MaxCover(\(\Gamma \), \(S \)) = Fraction of \(U_i \)'s covered by \(S \)

MaxCover(\(\Gamma \)) = max \(S \) MaxCover(\(\Gamma \), \(S \))
MaxCover: Recap

Each W_i is a **Right Super Node**
Each U_i is a **Left Super Node**

$\Gamma(U, W, E)$

$\text{Determine if } \text{MaxCover}(\Gamma) = 1 \text{ or } \text{MaxCover}(\Gamma) \leq s$

Each W_i is a Right Super Node
Each U_i is a Left Super Node
MaxCover: Recap

Each W_i is a **Right Super Node**
Each U_i is a **Left Super Node**

$S \subseteq W$ is a **labeling** of W if
$\forall i \in [k], |S \cap W_i| = 1$
Each W_i is a **Right Super Node**
Each U_i is a **Left Super Node**

$\Gamma(U, W, E)$

$S \subseteq W$ is a **labeling** of W if
$\forall i \in [k], |S \cap W_i| = 1$

S covers U_i if
$\exists u \in U_i, \forall v \in S, (u, v) \in E$
MaxCover: Recap

Each W_i is a Right Super Node
Each U_i is a Left Super Node

$S \subseteq W$ is a labeling of W if
$\forall i \in [k], |S \cap W_i| = 1$

S covers U_i if
$\exists u \in U_i, \forall v \in S, (u, v) \in E$

MaxCover(Γ, S) = Fraction of U_i’s covered by S
MaxCover: Recap

Each W_i is a **Right Super Node**
Each U_i is a **Left Super Node**

$S \subseteq W$ is a **labeling** of W if
$\forall i \in [k], |S \cap W_i| = 1$

S covers U_i if
$\exists u \in U_i, \forall v \in S, (u, v) \in E$

MaxCover(Γ, S) = Fraction of U_i's covered by S

MaxCover(Γ) = \max_S MaxCover(Γ, S)
MaxCover: Recap

Each W_i is a Right Super Node
Each U_i is a Left Super Node

$S \subseteq W$ is a labeling of W if
$\forall i \in [k], |S \cap W_i| = 1$

S covers U_i if
$\exists u \in U_i, \forall v \in S, (u, v) \in E$

MaxCover(Γ, S) = Fraction of U_i’s covered by S

MaxCover(Γ) = \max_S MaxCover(Γ, S)

Determine if MaxCover(Γ) = 1
or MaxCover(Γ) $\leq s$
MaxCover: Projection Property

\[\Gamma(U, W, E) \]

\(\Gamma \) has projection property:

For every \(U_i \) and \(W_j \),

- Induced subgraph of \((U_i, W_j)\) is:
 - complete bipartite graph (i.e., irrelevant), or,
 - \(\forall w \in W_j, \deg(w) = 1 \) (i.e., projection)
Γ has projection property:
For every \(U_i \) and \(W_j \),
Induced subgraph of \((U_i, W_j)\) is:
• complete bipartite graph (i.e., irrelevant), or,
• \(\forall w \in W_j, \deg(w) = 1 \) (i.e., projection)
MaxCover: Projection Property

\[\Gamma(U, W, E) \]

\[\Gamma \] has projection property:
For every \(U_i \) and \(W_j \),

Induced subgraph of \((U_i, W_j)\) is:
- **complete** bipartite graph (i.e., irrelevant), or,
- \(\forall w \in W_j, \deg(w) = 1 \)
 (i.e., projection)
MaxCover with Projection Property is \(\text{W}[1]\)-Hard

Input: \(G([n], E_0) \)

\[\Gamma(U, W, E) \]

\[U = \{ U_1, U_2, \ldots, U_k \} \]

\[W = \{ W_1, W_2, \ldots, W_{\ell} \} \]

Parameterized Inapproximability

December 27, 2020 7 / 31
MaxCover with Projection Property is $W[1]$-Hard

Input: \(G([n], E_0) \)

\[U_i = [n] \text{ and } W_{j,j'} = E_0 \]
MaxCover with Projection Property is $W[1]$-Hard

Input: $G([n], E_0)$

$U_i = [n]$ and $W_{j,j'} = E_0$

$W_{j,j'}$ has projection to U_j and $U_{j'}$
Inapproximability of MaxCover [K-LivniNavon’21]

There is a FPT reduction from MaxCover instance $\Gamma_0 = \left(U_0 = \bigcup_{j=1}^{r} U_j^0, W = \bigcup_{j=1}^{k} W_i, E_0 \right)$ with projection property to a MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$ such that

- If $\text{MaxCover}(\Gamma_0) = 1$ then $\text{MaxCover}(\Gamma) = 1$
- If $\text{MaxCover}(\Gamma_0) < 1$ then $\text{MaxCover}(\Gamma) \leq 0.75 |\Gamma|$

The reduction runs in time $2^{O(r \cdot |W| \cdot \log |U_0|)}$.
Inapproximability of MaxCover [K-LivniNavon’21]

There is a FPT reduction from MaxCover instance \(\Gamma_0 = \left(U_0 = \bigcup_{j=1}^{r} U_j^0, W = \bigcup_{j=1}^{k} W_i, E_0 \right) \) with projection property to a MaxCover instance \(\Gamma = \left(U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^{k} W_i, E \right) \) such that

- If \(\text{MaxCover}(\Gamma_0) = 1 \) then \(\text{MaxCover}(\Gamma) = 1 \)
- If \(\text{MaxCover}(\Gamma_0) < 1 \) then \(\text{MaxCover}(\Gamma) \leq 0.75 \)
Inapproximability of MaxCover [K-LivniNavon’21]

There is a FPT reduction from MaxCover instance $\Gamma_0 = \left(U_0 = \bigcup_{j=1}^{r} U_j^0, W = \bigcup_{j=1}^{k} W_i, E_0 \right)$ with projection property to a MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$ such that

- If $\text{MaxCover}(\Gamma_0) = 1$ then $\text{MaxCover}(\Gamma) = 1$
- If $\text{MaxCover}(\Gamma_0) < 1$ then $\text{MaxCover}(\Gamma) \leq 0.75$
- $|\Gamma| = \tilde{O}(2^r \cdot |W| \cdot \log |U_0|)$
- The reduction runs in time $2^{O(r)} \cdot \text{poly}(|\Gamma_0|)$.
Coding Theory: Recap

- $C \subseteq [q]^L$
- **Distance** of C:

 $$\Delta(C) := \min_{x,y \in C} \| x - y \|_0$$
Coding Theory: Recap

- $C \subseteq [q]^L$

- **Distance** of C:

 $$\Delta(C) := \min_{x, y \in C} \|x - y\|_0$$

- For some constant $\rho > 0$, collection of $2^{\rho L}$ Random Binary Strings is a code with distance $L/4$
Coding Theory: Recap

- $C \subseteq [q]^L$

- **Distance** of C:
 \[
 \Delta(C) := \min_{x, y \in C} \|x - y\|_0
 \]

- For some constant $\rho > 0$, collection of $2^{\rho L}$ Random Binary Strings is a code with distance $L/4$

- **Reed Solomon Codes**:
 - Evaluations of degree d univariate polynomials over \mathbb{F}_q
 - $|RS| = q^{d+1}$
 - $\Delta(RS) = q - d$
 - q^{d+1} codewords in $[q]^q$ with distance $q - d$
Threshold Graph Construction

\[A_t = \{0, 1\}^r \]

\[U_i^0 = C \]

Karthik C. S. (NYU)
Parameterized Inapproximability
December 27, 2020
Threshold Graph Construction

\[U_0 = \{ 0, 1 \}^r \]

\[(u, (q_1, \ldots, q_r)) \in U_i^0 \times A_t \text{ is an edge } \iff u_t = q_i \]
Completeness

For every $(u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0$ and every A_t
there exists a unique common neighbor of (u^1, \ldots, u^r) in A_t
Threshold Graph Properties

Completeness

For every \((u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0\) and every \(A_t\) there exists a unique common neighbor of \((u^1, \ldots, u^r)\) in \(A_t\)

Soundness

For every \(u, u' \in U_i^0\), there are at most \(L - \Delta(C)\) many supernodes in \(A\) which have a common neighbor of \(u\) and \(u'\)
\[A_t = \{0, 1\}^r \]

\[U_i^0 = C \]
Threshold Graph Composition

\[A_t = \{0, 1\}^r \]

\((w, (q_1, \ldots, q_r)) \in W_j \times A_t \) is an edge if and only if there exists \((u^1, \ldots, u^r) \in U_1^0 \times \cdots \times U_r^0 \) such that for all \(i \in [k] \), \((w, u^i) \) and \((u^i, (q_1, \ldots, q_r)) \) are both edges.
Completeness of Reduction

- Let \((w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k\) be \textit{optimal} labeling of \(\Gamma_0\).

- Let \((u^1, \ldots, u^r) \in U^0_1 \times \cdots \times U^0_r\) be \textit{common neighbors} of \((w_1, \ldots, w_k)\) in \(\Gamma_0\).
Completeness of Reduction

- Let \((w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k\) be optimal labeling of \(\Gamma_0\)
- Let \((u^1, \ldots, u^r) \in U^0_1 \times \cdots \times U^0_r\) be common neighbors of \((w_1, \ldots, w_k)\) in \(\Gamma_0\)

Completeness of Threshold Graph

For every \((u^1, \ldots, u^r) \in U^0_1 \times \cdots \times U^0_r\) and every \(A_t\)
there exists a unique common neighbor of \((u^1, \ldots, u^r)\) in \(A_t\)
Soundness of Reduction

- Fix \((w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k\)
- There exists \(U_i^0\) not covered by \((w_1, \ldots, w_k)\)
Soundness of Reduction

- Fix \((w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k\)
- There exists \(U_i^0\) not covered by \((w_1, \ldots, w_k)\)
- There exists \(w_j\) and \(w_{j'}\) with neighbors \(u\) and \(u'\) resp. in \(U_i^0\) \((u \neq u')\)
Soundness of Reduction

- Fix \((w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k\)
- There exists \(U^0_i\) not covered by \((w_1, \ldots, w_k)\)
- There exists \(w_j\) and \(w_j'\) with neighbors \(u\) and \(u'\) resp. in \(U^0_i\) \((u \neq u')\)
- If \(a \in A\) is common neighbor of \(w_j\) and \(w_j'\) in \(\Gamma\) then \(u\) and \(u'\) are common neighbors of \(a\) in Threshold graph
Soundness of Reduction

- Fix \((w_1, \ldots, w_k) \in W_1 \times \cdots \times W_k\)
- There exists \(U_0^i\) not covered by \((w_1, \ldots, w_k)\)
- There exists \(w_j\) and \(w_{j'}\) with neighbors \(u\) and \(u'\) resp. in \(U_0^i\) \((u \neq u')\)
- If \(a \in A\) is common neighbor of \(w_j\) and \(w_{j'}\) in \(\Gamma\) then \(u\) and \(u'\) are common neighbors of \(a\) in Threshold graph

Soundness of Threshold Graph

For every \(u, u' \in U_0^i\), there are at most \(L - \Delta(C)\) many supernodes in \(A\) which have a common neighbor of \(u\) and \(u'\)
Inapproximability of MaxCover using Random Binary Codes

There is a FPT reduction from MaxCover instance \(\Gamma_0 = \left(U_0 = \bigcup_{j=1}^{r} U_j^0, W = \bigcup_{j=1}^{k} W_i, E_0 \right) \) with projection property to a MaxCover instance \(\Gamma = \left(U = \bigcup_{j=1}^{O(\log |U_0|)} U_j, W = \bigcup_{j=1}^{k} W_i, E \right) \) such that

- If \(\text{MaxCover}(\Gamma_0) = 1 \) then \(\text{MaxCover}(\Gamma) = 1 \)
- If \(\text{MaxCover}(\Gamma_0) < 1 \) then \(\text{MaxCover}(\Gamma) \leq 0.75 \)
- \(|\Gamma| = \tilde{O}(2^r \cdot |W| \cdot \log |U_0|) \)
- The reduction runs in time \(2^{O(r)} \cdot \text{poly}(|\Gamma_0|) \).
Threshold Graph Composition with Reed Solomon Codes

\[A_t = [q]^r \]

\[U_i^0 = C \]

\[(w, (q_1, \ldots, q_r)) \in W_j \times A_t \text{ is an edge } \iff \exists (u^1, \ldots, u^r) \in U_1^0 \times \cdots U_r^0 \text{ such that} \]

\[\forall i \in [k], (w, u^i) \text{ and } (u^i, (q_1, \ldots, q_r)) \text{ are both edges} \]
Threshold Graph Properties

Completeness

For every $(u_1, \ldots, u_r) \in U_1^0 \times \cdots \times U_r^0$ and every A_t there exists a unique common neighbor of (u_1, \ldots, u_r) in A_t.

Soundness

For every $u, u' \in U_i^0$, there are at most $\log_q |U_0|$ many supernodes in A which have a common neighbor of u and u'.
MaxCover: Gap Creation

Inapproximability of MaxCover using Reed Solomon Codes

There is a FPT reduction from MaxCover instance $\Gamma_0 = \left(U_0 = \bigcup_{j=1}^{r} U_j^0, W = \bigcup_{j=1}^{k} W_i, E_0 \right)$ with projection property to a MaxCover instance $\Gamma = \left(U = \bigcup_{j=1}^{q} U_j, W = \bigcup_{j=1}^{k} W_i, E \right)$ such that

- If $\text{MaxCover}(\Gamma_0) = 1$ then $\text{MaxCover}(\Gamma) = 1$
- If $\text{MaxCover}(\Gamma_0) < 1$ then $\text{MaxCover}(\Gamma) \leq \frac{\log_q |U_0|}{q}$
- $|\Gamma| = \tilde{O}(q^r \cdot |W| \cdot \log |U_0|)$
- The reduction runs in time $q^r \cdot \text{poly}(|\Gamma_0|)$.
Part 2

Gap Creation in One-Sided Biclique
One-Sided Biclique: Recap

\[\Gamma(U, W, E) \]
One-Sided Biclique: Recap

\[\Gamma(U, W, E) \]

Find \(k \) vertices in \(W \) with most common neighbors

Karthik C. S. (NYU)
Parameterized Inapproximability
December 27, 2020
One-Sided Biclique: Recap

Find \(k \) vertices in \(W \) with most common neighbors

\[\Gamma(U, W, E) \]
Inapproximability of One-Sided Biclique (Lin’18)

There is a FPT reduction from k-Clique instance $G([n], E_0)$ to a One-Sided Biclique instance $\Gamma = (U, W, E)$ such that

- If G has a k-clique then there are $\binom{k}{2}$ vertices in W which have $n^{1/k}$ common neighbors in U.
- If G has no k-clique then for every $\binom{k}{2}$ vertices in W they have at most $(k + 1)!$ common neighbors in U.
- $|\Gamma| = n^3$.
- The reduction runs in time $\text{poly}(n)$.

Karthik C. S. (NYU)
Parameterized Inapproximability
December 27, 2020
21 / 31
Starting from k-Clique

Input: $G([n], E_0)$

$V = [n]$ $W = E_0$

If G has a k-clique then there are (k^2) vertices in W which in total have k neighbors.

If G has no k-clique then any (k^2) vertices in W has totally at least $k+1$ neighbors.
Starting from k-Clique

Input: $G([n], E_0)$

If G has a k-clique then there are $\binom{k}{2}$ vertices in W which in total have k neighbors.
Starting from \(k \)-Clique

\[
V = [n] \\
W = E_0
\]

Input: \(G([n], E_0) \)

If \(G \) has a \(k \)-clique then there are \(\binom{k}{2} \) vertices in \(W \) which in total have \(k \) neighbors

If \(G \) has no \(k \)-clique then any \(\binom{k}{2} \) vertices in \(W \) has totally at least \(k+1 \) neighbors
Threshold Graph

\[A = [n] \]

\[V = [n] \]

Every \(k \) vertices in \(V \) has at least \(n - 1/k \) common neighbors in \(A \).

Every \(k + 1 \) vertices in \(V \) has at most \((k + 1)!\) common neighbors in \(A \).
Threshold Graph

\[A = [n] \]

\[V = [n] \]

Every \(k \) vertices in \(V \) has at least \(n^{1/k} \) common neighbors in \(A \)

Every \(k+1 \) vertices in \(V \) has at most \((k+1)! \) common neighbors in \(A \)
Threshold Graph

\[A = [n] \]
\[V = [n] \]

Every \(k \) vertices in \(V \) has at least \(n^{1/k} \) common neighbors in \(A \)

Every \(k+1 \) vertices in \(V \) has at most \((k + 1)!\) common neighbors in \(A \)
Threshold Graph Composition

\[W = E_0 \]

\[A = [n] \]

\[V = [n] \]

\[(w, a) \in W \times A \text{ is an edge} \iff \exists u, u' \in U \text{ such that } a \text{ and } w \text{ are common neighbors of } u \text{ and } u' \]
$W = E_0$

$A = [n]$

$V = [n]$

$(w, a) \in W \times A$ is an edge $\iff \exists u, u' \in U$ such that a and w are common neighbors of u and u'.
Completeness of Reduction

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G
- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph
Completeness of Reduction

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G
- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph
- Every $a \in A'$ is also a common neighbor of $e_{v_i,v_j} \in W$ in Γ
Completeness of Reduction

- Let $v_1, \ldots, v_k \in V$ be vertices of k-clique in G
- Let $A' \subseteq A$ be common neighbors of v_1, \ldots, v_k in Threshold graph
- Every $a \in A'$ is also a common neighbor of $e_{v_i, v_j} \in W$ in Γ

Completeness of Threshold Graph

Every k vertices in V has at least $n^{1/k}$ common neighbors in A
Soundness of Reduction

- Fix \((w_1, \ldots, w_{k_2}) \in W\) and let \(A' \subseteq A\) be its set of common neighbors in \(\Gamma\).
Soundness of Reduction

- Fix \((w_1, \ldots, w_{\binom{k}{2}}) \in W\) and let \(A' \subseteq A\) be its set of common neighbors in \(\Gamma\).
- Let \(V' \subseteq V\) be set of total neighbors of \((w_1, \ldots, w_{\binom{k}{2}})\) in \(V\).
- \(|V'| \geq k + 1\)
Soundness of Reduction

1. Fix \((w_1, \ldots, w_{\binom{k}{2}}) \in W\) and let \(A' \subseteq A\) be its set of common neighbors in \(\Gamma\).
2. Let \(V' \subseteq V\) be the set of total neighbors of \((w_1, \ldots, w_{\binom{k}{2}})\) in \(V\).
3. \(|V'| \geq k + 1\).
4. \(A'\) is a subset of the common neighbors of \(V'\) in the Threshold graph.
Soundness of Reduction

- Fix \((w_1, \ldots, w_{k+1}) \in W\) and let \(A' \subseteq A\) be its set of common neighbors in \(\Gamma\).
- Let \(V' \subseteq V\) be set of total neighbors of \((w_1, \ldots, w_{k+1})\) in \(V\).
- \(|V'| \geq k + 1\).
- \(A'\) is a subset of the common neighbors of \(V'\) in Threshold graph.

Soundness of Threshold Graph

Every \(k+1\) vertices in \(V\) has at most \((k + 1)!\) common neighbors in \(A\).
Inapproximability of One-Sided Biclique (Lin’18)

There is a FPT reduction from k-Clique instance $G([n], E_0)$ to a One-Sided Biclique instance $\Gamma = (U, W, E)$ such that

- If G has a k-clique then there are $\binom{k}{2}$ vertices in W which have $n^{1/k}$ common neighbors in U.
- If G has no k-clique then for every $\binom{k}{2}$ vertices in W they have at most $(k+1)!$ common neighbors in U.
- $|\Gamma| = n^3$
- The reduction runs in time $\text{poly}(n)$
Threshold Graph

$A = [n]$ \hspace{5cm} V = [n]

Every k vertices in V has at least $n^{1/k}$ common neighbors in A.

Every $k+1$ vertices in V has at most $(k + 1)!$ common neighbors in A.
Threshold Graph

\[A = [n] \]

\[V = [n] \]

Every \(k \) vertices in \(V \) has at least \(n \) common neighbors in \(A \).

Every \(k + 1 \) vertices in \(V \) has at most \((k + 1)\)! common neighbors in \(A \).

IT DOES EXIST
Random Algebraic Constructions

- Erdős-Renyi model Random graphs fail: long smooth-decaying tail
Random Algebraic Constructions

- Erdős-Renyi model Random graphs fail: long smooth-decaying tail
- Random graphs defined over some specific ‘algebraic distribution’ suffice
Random Algebraic Constructions

- Erdös-Renyi model Random graphs fail: long smooth-decaying tail
- Random graphs defined over some specific ‘algebraic distribution’ suffice
- Normed graphs provide semi-explicit construction
Take-away Intuition and Remarks

- Threshold Graph Composition Technique Ingredients:
 - Threshold Graph
 - Composition of Input Graph with Threshold Graph
Take-away Intuition and Remarks

- Threshold Graph Composition Technique Ingredients:
 - Threshold Graph
 - Composition of Input Graph with Threshold Graph
- Threshold Graph
 - What are the required threshold properties?
 - Does the graph with above properties exist?
Take-away Intuition and Remarks

- Threshold Graph Composition Technique Ingredients:
 - Threshold Graph
 - Composition of Input Graph with Threshold Graph
- Threshold Graph
 - What are the required threshold properties?
 - Does the graph with above properties exist?
- Tweak ‘Composition of Input Graph with Threshold Graph’ in order to require weaker/more realistic threshold properties
Take-away Intuition and Remarks

- Threshold Graph Composition Technique Ingredients:
 - Threshold Graph
 - Composition of Input Graph with Threshold Graph

- Threshold Graph
 - What are the required threshold properties?
 - Does the graph with above properties exist?

- Tweak ‘Composition of Input Graph with Threshold Graph’ in order to require weaker/more realistic threshold properties

- Start from more structured Input problem
Tomorrow’s plan

- Set Cover
- Biclique
- Clique